Anushree1's picture
Update app.py
5ef62cb verified
import gradio as gr
import torch
from pyannote.audio import Inference
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import os
# βœ… Use HF token from Hugging Face Space secrets
hf_token = os.getenv("HF_TOKEN")
# πŸ” Load model with authentication
model = Inference("pyannote/embedding", use_auth_token=hf_token, window="whole")
# 🎧 Load known speaker embeddings
speaker_embeddings = {}
for speaker in os.listdir("known_speakers"):
if speaker.endswith(".wav"):
emb = model(f"known_speakers/{speaker}")
speaker_embeddings[speaker.replace(".wav", "")] = emb
def identify_speaker(audio):
input_embedding = model(audio)
best_score = -1
best_speaker = "Unknown"
for name, emb in speaker_embeddings.items():
score = cosine_similarity(input_embedding.numpy().reshape(1, -1), emb.numpy().reshape(1, -1))[0][0]
if score > best_score:
best_score = score
best_speaker = name
return f"🧍 Identified Speaker: {best_speaker}\nπŸ§ͺ Similarity Score: {best_score:.2f}"
# πŸš€ Launch Gradio UI
gr.Interface(
fn=identify_speaker,
inputs=gr.Audio(source="microphone", type="filepath", label="πŸŽ™οΈ Upload or record voice"),
outputs="text",
title="🎀 Speaker Identification App",
description="Upload a voice clip to identify the speaker."
).launch()