Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from pyannote.audio import Inference | |
import numpy as np | |
from sklearn.metrics.pairwise import cosine_similarity | |
import os | |
# β Use HF token from Hugging Face Space secrets | |
hf_token = os.getenv("HF_TOKEN") | |
# π Load model with authentication | |
model = Inference("pyannote/embedding", use_auth_token=hf_token, window="whole") | |
# π§ Load known speaker embeddings | |
speaker_embeddings = {} | |
for speaker in os.listdir("known_speakers"): | |
if speaker.endswith(".wav"): | |
emb = model(f"known_speakers/{speaker}") | |
speaker_embeddings[speaker.replace(".wav", "")] = emb | |
def identify_speaker(audio): | |
input_embedding = model(audio) | |
best_score = -1 | |
best_speaker = "Unknown" | |
for name, emb in speaker_embeddings.items(): | |
score = cosine_similarity(input_embedding.numpy().reshape(1, -1), emb.numpy().reshape(1, -1))[0][0] | |
if score > best_score: | |
best_score = score | |
best_speaker = name | |
return f"π§ Identified Speaker: {best_speaker}\nπ§ͺ Similarity Score: {best_score:.2f}" | |
# π Launch Gradio UI | |
gr.Interface( | |
fn=identify_speaker, | |
inputs=gr.Audio(source="microphone", type="filepath", label="ποΈ Upload or record voice"), | |
outputs="text", | |
title="π€ Speaker Identification App", | |
description="Upload a voice clip to identify the speaker." | |
).launch() | |