"""This module contains simple helper functions """ from __future__ import print_function import torch import numpy as np from PIL import Image import os import importlib import argparse from argparse import Namespace import torchvision import cv2 as cv def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def copyconf(default_opt, **kwargs): conf = Namespace(**vars(default_opt)) for key in kwargs: setattr(conf, key, kwargs[key]) return conf def find_class_in_module(target_cls_name, module): target_cls_name = target_cls_name.replace('_', '').lower() clslib = importlib.import_module(module) cls = None for name, clsobj in clslib.__dict__.items(): if name.lower() == target_cls_name: cls = clsobj assert cls is not None, "In %s, there should be a class whose name matches %s in lowercase without underscore(_)" % (module, target_cls_name) return cls def tensor2im(input_image, imtype=np.uint8): """"Converts a Tensor array into a numpy image array. Parameters: input_image (tensor) -- the input image tensor array imtype (type) -- the desired type of the converted numpy array """ if not isinstance(input_image, np.ndarray): if isinstance(input_image, torch.Tensor): # get the data from a variable image_tensor = input_image.data else: return input_image image_numpy = image_tensor[0].clamp(-1.0, 1.0).cpu().float().numpy() # convert it into a numpy array if image_numpy.shape[0] == 1: # grayscale to RGB image_numpy = np.tile(image_numpy, (3, 1, 1)) image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling else: # if it is a numpy array, do nothing image_numpy = input_image return image_numpy.astype(imtype) def diagnose_network(net, name='network'): """Calculate and print the mean of average absolute(gradients) Parameters: net (torch network) -- Torch network name (str) -- the name of the network """ mean = 0.0 count = 0 for param in net.parameters(): if param.grad is not None: mean += torch.mean(torch.abs(param.grad.data)) count += 1 if count > 0: mean = mean / count print(name) print(mean) def save_image(image_numpy, image_path, aspect_ratio=1.0): """Save a numpy image to the disk Parameters: image_numpy (numpy array) -- input numpy array image_path (str) -- the path of the image """ image_pil = Image.fromarray(image_numpy) h, w, _ = image_numpy.shape if aspect_ratio is None: pass elif aspect_ratio > 1.0: image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.BICUBIC) elif aspect_ratio < 1.0: image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.BICUBIC) image_pil.save(image_path) def print_numpy(x, val=True, shp=False): """Print the mean, min, max, median, std, and size of a numpy array Parameters: val (bool) -- if print the values of the numpy array shp (bool) -- if print the shape of the numpy array """ x = x.astype(np.float64) if shp: print('shape,', x.shape) if val: x = x.flatten() print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) def mkdirs(paths): """create empty directories if they don't exist Parameters: paths (str list) -- a list of directory paths """ if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): """create a single empty directory if it didn't exist Parameters: path (str) -- a single directory path """ if not os.path.exists(path): os.makedirs(path) def correct_resize_label(t, size): device = t.device t = t.detach().cpu() resized = [] for i in range(t.size(0)): one_t = t[i, :1] one_np = np.transpose(one_t.numpy().astype(np.uint8), (1, 2, 0)) one_np = one_np[:, :, 0] one_image = Image.fromarray(one_np).resize(size, Image.NEAREST) resized_t = torch.from_numpy(np.array(one_image)).long() resized.append(resized_t) return torch.stack(resized, dim=0).to(device) def correct_resize(t, size, mode=Image.BICUBIC): device = t.device t = t.detach().cpu() resized = [] for i in range(t.size(0)): one_t = t[i:i + 1] one_image = Image.fromarray(tensor2im(one_t)).resize(size, Image.BICUBIC) resized_t = torchvision.transforms.functional.to_tensor(one_image) * 2 - 1.0 resized.append(resized_t) return torch.stack(resized, dim=0).to(device) def expand_as_one_hot(input, C, ignore_index=None): """ Converts NxSPATIAL label image to NxCxSPATIAL, where each label gets converted to its corresponding one-hot vector. It is assumed that the batch dimension is present. Args: input (torch.Tensor): 3D/4D input image C (int): number of channels/labels ignore_index (int): ignore index to be kept during the expansion Returns: 4D/5D output torch.Tensor (NxCxSPATIAL) """ # expand the input tensor to Nx1xSPATIAL before scattering input = input.unsqueeze(1) # create output tensor shape (NxCxSPATIAL) shape = list(input.size()) shape[1] = C if ignore_index is not None: # create ignore_index mask for the result mask = input.expand(shape) == ignore_index # clone the src tensor and zero out ignore_index in the input input = input.clone() input[input == ignore_index] = 0 # scatter to get the one-hot tensor result = torch.zeros(shape).to(input.device).scatter_(1, input, 1) # bring back the ignore_index in the result result[mask] = ignore_index return result else: # scatter to get the one-hot tensor return torch.zeros(shape).to(input.device).scatter_(1, input, 1) def standardize(ref, I, threshold=50): """ Transform image I to standard brightness. Modifies the luminosity channel such that a fixed percentile is saturated. :param I: Image uint8 RGB. :param percentile: Percentile for luminosity saturation. At least (100 - percentile)% of pixels should be fully luminous (white). :return: Image uint8 RGB with standardized brightness. """ ref_m = cv.cvtColor(ref, cv.COLOR_RGB2LAB)[:, :, 0].astype(float).mean() I_LAB = cv.cvtColor(I, cv.COLOR_RGB2LAB) L_float = I_LAB[:, :, 0].astype(float) tgt_m = L_float.mean() if np.abs(tgt_m - ref_m) > threshold: L_float = L_float - tgt_m + ref_m I_LAB[:, :, 0] = np.clip(L_float, 0, 255).astype(np.uint8) I = cv.cvtColor(I_LAB, cv.COLOR_LAB2RGB) return I