import os.path import numpy as np import torch import json from data.base_dataset import BaseDataset, get_transform from data.image_folder import make_dataset from PIL import Image import random import util.util as util class AlignedDataset(BaseDataset): """ This dataset class can load aligned/paired datasets. It requires two directories to host training images from domain A '/path/to/data/trainA' and from domain B '/path/to/data/trainB' respectively. You can train the model with the dataset flag '--dataroot /path/to/data'. Similarly, you need to prepare two directories: '/path/to/data/testA' and '/path/to/data/testB' during test time. """ def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseDataset.__init__(self, opt) self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') # create a path '/path/to/data/trainA' self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') # create a path '/path/to/data/trainB' if opt.phase == "test" and not os.path.exists(self.dir_A) \ and os.path.exists(os.path.join(opt.dataroot, "valA")): self.dir_A = os.path.join(opt.dataroot, "valA") self.dir_B = os.path.join(opt.dataroot, "valB") self.A_paths = sorted(make_dataset(self.dir_A, opt.max_dataset_size)) # load images from '/path/to/data/trainA' self.B_paths = sorted(make_dataset(self.dir_B, opt.max_dataset_size)) # load images from '/path/to/data/trainB' self.A_size = len(self.A_paths) # get the size of dataset A self.B_size = len(self.B_paths) # get the size of dataset B assert self.A_size == self.B_size def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index (int) -- a random integer for data indexing Returns a dictionary that contains A, B, A_paths and B_paths A (tensor) -- an image in the input domain B (tensor) -- its corresponding image in the target domain A_paths (str) -- image paths B_paths (str) -- image paths """ if self.opt.serial_batches: # make sure index is within then range index_B = index % self.B_size else: # randomize the index for domain B to avoid fixed pairs. index = random.randint(0, self.A_size - 1) index_B = index % self.B_size A_path = self.A_paths[index] # make sure index is within then range B_path = self.B_paths[index_B] assert A_path == B_path.replace('trainB', 'trainA').replace('valB', 'valA').replace('testB', 'testA') A_img = Image.open(A_path).convert('RGB') B_img = Image.open(B_path).convert('RGB') # Apply image transformation # For CUT/FastCUT mode, if in finetuning phase (learning rate is decaying), # do not perform resize-crop data augmentation of CycleGAN. is_finetuning = self.opt.isTrain and self.current_epoch > self.opt.n_epochs modified_opt = util.copyconf(self.opt, load_size=self.opt.crop_size if is_finetuning else self.opt.load_size) transform = get_transform(modified_opt) # FDL: synchronize transforms seed = np.random.randint(2147483647) # make a seed with numpy generator random.seed(seed) # apply this seed to img tranfsorms torch.manual_seed(seed) # needed for torchvision 0.7 A = transform(A_img) random.seed(seed) # apply this seed to target tranfsorms torch.manual_seed(seed) # needed for torchvision 0.7 B = transform(B_img) return {'A': A, 'B': B, 'A_paths': A_path, 'B_paths': B_path} def __len__(self): """Return the total number of images in the dataset. As we have two datasets with potentially different number of images, we take a maximum of """ return max(self.A_size, self.B_size)