File size: 7,265 Bytes
207ef6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
"""This module contains simple helper functions """
from __future__ import print_function
import torch
import numpy as np
from PIL import Image
import os
import importlib
import argparse
from argparse import Namespace
import torchvision
import cv2 as cv


def str2bool(v):
    if isinstance(v, bool):
        return v
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected.')


def copyconf(default_opt, **kwargs):
    conf = Namespace(**vars(default_opt))
    for key in kwargs:
        setattr(conf, key, kwargs[key])
    return conf


def find_class_in_module(target_cls_name, module):
    target_cls_name = target_cls_name.replace('_', '').lower()
    clslib = importlib.import_module(module)
    cls = None
    for name, clsobj in clslib.__dict__.items():
        if name.lower() == target_cls_name:
            cls = clsobj

    assert cls is not None, "In %s, there should be a class whose name matches %s in lowercase without underscore(_)" % (module, target_cls_name)

    return cls


def tensor2im(input_image, imtype=np.uint8):
    """"Converts a Tensor array into a numpy image array.

    Parameters:
        input_image (tensor) --  the input image tensor array
        imtype (type)        --  the desired type of the converted numpy array
    """
    if not isinstance(input_image, np.ndarray):
        if isinstance(input_image, torch.Tensor):  # get the data from a variable
            image_tensor = input_image.data
        else:
            return input_image
        image_numpy = image_tensor[0].clamp(-1.0, 1.0).cpu().float().numpy()  # convert it into a numpy array
        if image_numpy.shape[0] == 1:  # grayscale to RGB
            image_numpy = np.tile(image_numpy, (3, 1, 1))
        image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0  # post-processing: tranpose and scaling
    else:  # if it is a numpy array, do nothing
        image_numpy = input_image
    return image_numpy.astype(imtype)


def diagnose_network(net, name='network'):
    """Calculate and print the mean of average absolute(gradients)

    Parameters:
        net (torch network) -- Torch network
        name (str) -- the name of the network
    """
    mean = 0.0
    count = 0
    for param in net.parameters():
        if param.grad is not None:
            mean += torch.mean(torch.abs(param.grad.data))
            count += 1
    if count > 0:
        mean = mean / count
    print(name)
    print(mean)


def save_image(image_numpy, image_path, aspect_ratio=1.0):
    """Save a numpy image to the disk

    Parameters:
        image_numpy (numpy array) -- input numpy array
        image_path (str)          -- the path of the image
    """

    image_pil = Image.fromarray(image_numpy)
    h, w, _ = image_numpy.shape

    if aspect_ratio is None:
        pass
    elif aspect_ratio > 1.0:
        image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.BICUBIC)
    elif aspect_ratio < 1.0:
        image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.BICUBIC)
    image_pil.save(image_path)


def print_numpy(x, val=True, shp=False):
    """Print the mean, min, max, median, std, and size of a numpy array

    Parameters:
        val (bool) -- if print the values of the numpy array
        shp (bool) -- if print the shape of the numpy array
    """
    x = x.astype(np.float64)
    if shp:
        print('shape,', x.shape)
    if val:
        x = x.flatten()
        print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % (
            np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x)))


def mkdirs(paths):
    """create empty directories if they don't exist

    Parameters:
        paths (str list) -- a list of directory paths
    """
    if isinstance(paths, list) and not isinstance(paths, str):
        for path in paths:
            mkdir(path)
    else:
        mkdir(paths)


def mkdir(path):
    """create a single empty directory if it didn't exist

    Parameters:
        path (str) -- a single directory path
    """
    if not os.path.exists(path):
        os.makedirs(path)


def correct_resize_label(t, size):
    device = t.device
    t = t.detach().cpu()
    resized = []
    for i in range(t.size(0)):
        one_t = t[i, :1]
        one_np = np.transpose(one_t.numpy().astype(np.uint8), (1, 2, 0))
        one_np = one_np[:, :, 0]
        one_image = Image.fromarray(one_np).resize(size, Image.NEAREST)
        resized_t = torch.from_numpy(np.array(one_image)).long()
        resized.append(resized_t)
    return torch.stack(resized, dim=0).to(device)


def correct_resize(t, size, mode=Image.BICUBIC):
    device = t.device
    t = t.detach().cpu()
    resized = []
    for i in range(t.size(0)):
        one_t = t[i:i + 1]
        one_image = Image.fromarray(tensor2im(one_t)).resize(size, Image.BICUBIC)
        resized_t = torchvision.transforms.functional.to_tensor(one_image) * 2 - 1.0
        resized.append(resized_t)
    return torch.stack(resized, dim=0).to(device)


def expand_as_one_hot(input, C, ignore_index=None):
    """
    Converts NxSPATIAL label image to NxCxSPATIAL, where each label gets converted to its corresponding one-hot vector.
    It is assumed that the batch dimension is present.
    Args:
        input (torch.Tensor): 3D/4D input image
        C (int): number of channels/labels
        ignore_index (int): ignore index to be kept during the expansion
    Returns:
        4D/5D output torch.Tensor (NxCxSPATIAL)
    """
    # expand the input tensor to Nx1xSPATIAL before scattering
    input = input.unsqueeze(1)
    # create output tensor shape (NxCxSPATIAL)
    shape = list(input.size())
    shape[1] = C

    if ignore_index is not None:
        # create ignore_index mask for the result
        mask = input.expand(shape) == ignore_index
        # clone the src tensor and zero out ignore_index in the input
        input = input.clone()
        input[input == ignore_index] = 0
        # scatter to get the one-hot tensor
        result = torch.zeros(shape).to(input.device).scatter_(1, input, 1)
        # bring back the ignore_index in the result
        result[mask] = ignore_index
        return result
    else:
        # scatter to get the one-hot tensor
        return torch.zeros(shape).to(input.device).scatter_(1, input, 1)

def standardize(ref, I, threshold=50):
    """
    Transform image I to standard brightness.
    Modifies the luminosity channel such that a fixed percentile is saturated.

    :param I: Image uint8 RGB.
    :param percentile: Percentile for luminosity saturation. At least (100 - percentile)% of pixels should be fully luminous (white).
    :return: Image uint8 RGB with standardized brightness.
    """
    ref_m = cv.cvtColor(ref, cv.COLOR_RGB2LAB)[:, :, 0].astype(float).mean()

    I_LAB = cv.cvtColor(I, cv.COLOR_RGB2LAB)
    L_float = I_LAB[:, :, 0].astype(float)
    tgt_m = L_float.mean()
    if np.abs(tgt_m - ref_m) > threshold:
        L_float = L_float - tgt_m + ref_m
        I_LAB[:, :, 0] = np.clip(L_float, 0, 255).astype(np.uint8)
        I = cv.cvtColor(I_LAB, cv.COLOR_LAB2RGB)
    return I