import os import subprocess import signal import tempfile from pathlib import Path from textwrap import dedent import logging import gradio as gr from huggingface_hub import HfApi, ModelCard, whoami from gradio_huggingfacehub_search import HuggingfaceHubSearch from apscheduler.schedulers.background import BackgroundScheduler from datetime import datetime os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py" logger = logging.getLogger(__name__) def get_repo_namespace(repo_owner, username, user_orgs): if repo_owner == 'self': return username for org in user_orgs: if org['name'] == repo_owner: return org['name'] raise ValueError(f"Invalid repo_owner: {repo_owner}") def escape(s: str) -> str: return s.replace("&", "&").replace("<", "<").replace(">", ">").replace('"', """).replace("\n", "
") def toggle_repo_owner(export_to_org, oauth_token: gr.OAuthToken | None): if oauth_token is None or oauth_token.token is None: raise gr.Error("You must be logged in to use GGUF-my-repo") if not export_to_org: return gr.update(visible=False, choices=["self"], value="self"), gr.update(visible=False, value="") info = whoami(oauth_token.token) orgs = [org["name"] for org in info.get("orgs", [])] return gr.update(visible=True, choices=["self"] + orgs, value="self"), gr.update(visible=True) def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str): imatrix_command = [ "./llama.cpp/llama-imatrix", "-m", model_path, "-f", train_data_path, "-ngl", "99", "--output-frequency", "10", "-o", output_path, ] if not os.path.isfile(model_path): raise Exception(f"Model file not found: {model_path}") print("Running imatrix command...") process = subprocess.Popen(imatrix_command, shell=False) try: process.wait(timeout=60) # added wait except subprocess.TimeoutExpired: print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...") process.send_signal(signal.SIGINT) try: process.wait(timeout=5) # grace period except subprocess.TimeoutExpired: print("Imatrix proc still didn't term. Forecfully terming process...") process.kill() print("Importance matrix generation completed.") def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None, org_token=None, export_to_org=False): print(f"Model path: {model_path}") print(f"Output dir: {outdir}") if oauth_token is None or oauth_token.token is None: raise ValueError("You have to be logged in.") split_cmd = [ "./llama.cpp/llama-gguf-split", "--split", ] if split_max_size: split_cmd.append("--split-max-size") split_cmd.append(split_max_size) else: split_cmd.append("--split-max-tensors") split_cmd.append(str(split_max_tensors)) # args for output model_path_prefix = '.'.join(model_path.split('.')[:-1]) # remove the file extension split_cmd.append(model_path) split_cmd.append(model_path_prefix) print(f"Split command: {split_cmd}") result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True) print(f"Split command stdout: {result.stdout}") print(f"Split command stderr: {result.stderr}") if result.returncode != 0: stderr_str = result.stderr.decode("utf-8") raise Exception(f"Error splitting the model: {stderr_str}") print("Model split successfully!") # remove the original model file if needed if os.path.exists(model_path): os.remove(model_path) model_file_prefix = model_path_prefix.split('/')[-1] print(f"Model file name prefix: {model_file_prefix}") sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")] if sharded_model_files: print(f"Sharded model files: {sharded_model_files}") if export_to_org and org_token!="": api = HfApi(token = org_token) else: api = HfApi(token=oauth_token.token) for file in sharded_model_files: file_path = os.path.join(outdir, file) print(f"Uploading file: {file_path}") try: api.upload_file( path_or_fileobj=file_path, path_in_repo=file, repo_id=repo_id, ) except Exception as e: raise Exception(f"Error uploading file {file_path}: {e}") else: raise Exception("No sharded files found.") print("Sharded model has been uploaded successfully!") def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, export_to_org, repo_owner, org_token, oauth_token: gr.OAuthToken | None): if oauth_token is None or oauth_token.token is None: raise gr.Error("You must be logged in to use GGUF-my-repo") user_info = whoami(oauth_token.token) username = user_info["name"] user_orgs = user_info.get("orgs", []) if not export_to_org: repo_owner = "self" current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") print(f"Time {current_time}, Username {username}, Model_ID, {model_id}, q_method {','.join(q_method)}") repo_namespace = get_repo_namespace(repo_owner, username, user_orgs) model_name = model_id.split('/')[-1] api_token = org_token if (export_to_org and org_token!="") else oauth_token.token api = HfApi(token=api_token) dl_pattern = ["*.md", "*.json", "*.model"] pattern = "*.safetensors" if any( f.path.endswith(".safetensors") for f in api.list_repo_tree(repo_id=model_id, recursive=True) ) else "*.bin" dl_pattern += [pattern] os.makedirs("downloads", exist_ok=True) os.makedirs("outputs", exist_ok=True) with tempfile.TemporaryDirectory(dir="outputs") as outdir: fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf") with tempfile.TemporaryDirectory(dir="downloads") as tmpdir: local_dir = Path(tmpdir)/model_name api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern) config_dir = local_dir/"config.json" adapter_config_dir = local_dir/"adapter_config.json" if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir): raise Exception("adapter_config.json is present. If converting LoRA, use GGUF-my-lora.") result = subprocess.run(["python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16], shell=False, capture_output=True) if result.returncode != 0: raise Exception(f"Error converting to fp16: {result.stderr.decode()}") imatrix_path = Path(outdir)/"imatrix.dat" if use_imatrix: train_data_path = train_data_file.name if train_data_file else "llama.cpp/groups_merged.txt" if not os.path.isfile(train_data_path): raise Exception(f"Training data not found: {train_data_path}") generate_importance_matrix(fp16, train_data_path, imatrix_path) quant_methods = [imatrix_q_method] if use_imatrix else (q_method if isinstance(q_method, list) else [q_method]) suffix = "imat" if use_imatrix else None gguf_files = [] for method in quant_methods: name = f"{model_name.lower()}-{method.lower()}-{suffix}.gguf" if suffix else f"{model_name.lower()}-{method.lower()}.gguf" path = str(Path(outdir)/name) quant_cmd = ["./llama.cpp/llama-quantize", "--imatrix", imatrix_path, fp16, path, method] if use_imatrix else ["./llama.cpp/llama-quantize", fp16, path, method] result = subprocess.run(quant_cmd, shell=False, capture_output=True) if result.returncode != 0: raise Exception(f"Quantization failed ({method}): {result.stderr.decode()}") gguf_files.append((name, path)) suffix_for_repo = f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods) repo_id = f"{repo_namespace}/{model_name}-{suffix_for_repo}-GGUF" new_repo_url = api.create_repo(repo_id=repo_id, exist_ok=True, private=private_repo) try: card = ModelCard.load(model_id, token=oauth_token.token) except: card = ModelCard("") card.data.tags = (card.data.tags or []) + ["llama-cpp", "gguf-my-repo"] card.data.base_model = model_id card.text = dedent(f""" # {repo_id} Absolutely tremendous! This repo features **GGUF quantized** versions of [{model_id}](https://huggingface.co/{model_id}) — made possible using the *very powerful* `llama.cpp`. Believe me, it's fast, it's smart, it's winning. ## Quantized Versions: Only the best quantization. You’ll love it. ## Run with llama.cpp Just plug it in, hit the command line, and boom — you're running world-class AI, folks: ```bash llama-cli --hf-repo {repo_id} --hf-file {gguf_files[0][0]} -p "AI First, but also..." ``` This beautiful Hugging Face Space was brought to you by the **amazing team at [Antigma Labs](https://antigma.ai)**. Great people. Big vision. Doing things that matter — and doing them right. Total winners. """) readme_path = Path(outdir)/"README.md" card.save(readme_path) for name, path in gguf_files: if split_model: split_upload_model(path, outdir, repo_id, oauth_token, split_max_tensors, split_max_size, org_token, export_to_org) else: api.upload_file(path_or_fileobj=path, path_in_repo=name, repo_id=repo_id) if use_imatrix and os.path.isfile(imatrix_path): api.upload_file(path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=repo_id) api.upload_file(path_or_fileobj=readme_path, path_in_repo="README.md", repo_id=repo_id) return (f'

✅ DONE


Repo: {repo_id}', f"llama{np.random.randint(9)}.png") css="""/* Custom CSS to allow scrolling */ .gradio-container {overflow-y: auto;} """ model_id = HuggingfaceHubSearch( label="Hub Model ID", placeholder="Search for model id on Huggingface", search_type="model", ) export_to_org = gr.Checkbox( label="Export to Organization Repository", value=False, info="If checked, you can select an organization to export to." ) repo_owner = gr.Dropdown( choices=["self"], value="self", label="Repository Owner", visible=False ) org_token = gr.Textbox( label="Org Access Token", type="password", visible=False ) q_method = gr.Dropdown( ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"], label="Quantization Method", info="GGML quantization type", value="Q4_K_M", filterable=False, visible=True, multiselect=True ) imatrix_q_method = gr.Dropdown( ["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"], label="Imatrix Quantization Method", info="GGML imatrix quants type", value="IQ4_NL", filterable=False, visible=False ) use_imatrix = gr.Checkbox( value=False, label="Use Imatrix Quantization", info="Use importance matrix for quantization." ) private_repo = gr.Checkbox( value=False, label="Private Repo", info="Create a private repo under your username." ) train_data_file = gr.File( label="Training Data File", file_types=["txt"], visible=False ) split_model = gr.Checkbox( value=False, label="Split Model", info="Shard the model using gguf-split." ) split_max_tensors = gr.Number( value=256, label="Max Tensors per File", info="Maximum number of tensors per file when splitting model.", visible=False ) split_max_size = gr.Textbox( label="Max File Size", info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G", visible=False ) iface = gr.Interface( fn=process_model, inputs=[ model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, export_to_org, repo_owner, org_token ], outputs=[ gr.Markdown(label="Output"), gr.Image(show_label=False) ], title="Make your own GGUF Quants — faster than ever before, believe me.", description="We take your Hugging Face repo — a terrific repo — we quantize it, we package it beautifully, and we give you your very own repo. It's smart. It's efficient. It's huge. You're gonna love it.", api_name=False ) with gr.Blocks(css=".gradio-container {overflow-y: auto;}",theme=gr.themes.Glass()) as demo: gr.Markdown("Logged in, you must be. Classy, secure, and victorious, it keeps us.") gr.LoginButton(min_width=250) export_to_org.change(fn=toggle_repo_owner, inputs=[export_to_org], outputs=[repo_owner, org_token]) split_model.change(fn=lambda sm: (gr.update(visible=sm), gr.update(visible=sm)), inputs=split_model, outputs=[split_max_tensors, split_max_size]) use_imatrix.change(fn=lambda use: (gr.update(visible=not use), gr.update(visible=use), gr.update(visible=use)), inputs=use_imatrix, outputs=[q_method, imatrix_q_method, train_data_file]) iface.render() def restart_space(): HfApi().restart_space(repo_id="Antigma/quantize-my-repo", token=HF_TOKEN, factory_reboot=True) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=21600) scheduler.start() demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)