import os import subprocess import signal import tempfile from pathlib import Path from textwrap import dedent import logging import gradio as gr from huggingface_hub import HfApi, ModelCard, whoami from gradio_huggingfacehub_search import HuggingfaceHubSearch from apscheduler.schedulers.background import BackgroundScheduler from datetime import datetime import numpy as np import shutil HF_TOKEN = os.environ.get("HF_TOKEN") os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py" log_dir = "/data/logs" downloads_dir = "/data/downloads" outputs_dir = "/data/outputs" os.makedirs(log_dir, exist_ok=True) logging.basicConfig( filename=os.path.join(log_dir, "app.log"), level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s", ) logger = logging.getLogger(__name__) def get_llama_cpp_notes( gguf_files, new_repo_url, split_model, model_id=None, ): try: result = subprocess.run( ["git", "-C", "./llama.cpp", "describe", "--tags", "--always"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True, text=True, ) version = result.stdout.strip().split("-")[0] text = f""" *Produced by [Antigma Labs](https://antigma.ai)* *Follow Antigma Labs in X [https://x.com/antigma_labs](https://x.com/antigma_labs)* *Antigma's GitHub Homepage [https://github.com/AntigmaLabs](https://github.com/AntigmaLabs)* ## llama.cpp quantization Using llama.cpp release b4944 for quantization. Original model: https://huggingface.co/{model_id} Run them directly with [llama.cpp](https://github.com/ggml-org/llama.cpp), or any other llama.cpp based project ## Prompt format ``` <|begin▁of▁sentence|>{{system_prompt}}<|User|>{{prompt}}<|Assistant|><|end▁of▁sentence|><|Assistant|> ``` ## Download a file (not the whole branch) from below: | Filename | Quant type | File Size | Split | | -------- | ---------- | --------- | ----- | | {'|'.join(['|'.join([gguf_files[i][0][:-5] if split_model else ('['+gguf_files[i][0]+']'+'(' + new_repo_url+'/blob/main/'+gguf_files[i][0] + ')'), gguf_files[i][3], f"{gguf_files[i][2]:.2f}" + ' GB', str(split_model),''' ''']) for i in range(len(gguf_files))]) } ## Downloading using huggingface-cli
Click to view download instructions First, make sure you have hugginface-cli installed: ``` pip install -U "huggingface_hub[cli]" ``` Then, you can target the specific file you want: ``` huggingface-cli download {new_repo_url} --include "{gguf_files[0][0]}" --local-dir ./ ``` If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run: ``` huggingface-cli download {new_repo_url} --include "{gguf_files[0][0]}/*" --local-dir ./ ``` You can either specify a new local-dir (deepseek-ai_DeepSeek-V3-0324-Q8_0) or download them all in place (./)
""" return text except subprocess.CalledProcessError as e: print("Error:", e.stderr.strip()) return None def get_repo_namespace(repo_owner, username, user_orgs): if repo_owner == "self": return username for org in user_orgs: if org["name"] == repo_owner: return org["name"] raise ValueError(f"Invalid repo_owner: {repo_owner}") def escape(s: str) -> str: return ( s.replace("&", "&") .replace("<", "<") .replace(">", ">") .replace('"', """) .replace("\n", "
") ) def toggle_repo_owner(export_to_org, oauth_token: gr.OAuthToken | None): if oauth_token is None or oauth_token.token is None: raise gr.Error("You must be logged in to use GGUF-my-repo") if not export_to_org: return gr.update(visible=False, choices=["self"], value="self"), gr.update( visible=False, value="" ) info = whoami(oauth_token.token) orgs = [org["name"] for org in info.get("orgs", [])] return gr.update(visible=True, choices=["self"] + orgs, value="self"), gr.update( visible=True ) def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str): imatrix_command = [ "./llama.cpp/llama-imatrix", "-m", model_path, "-f", train_data_path, "-ngl", "99", "--output-frequency", "10", "-o", output_path, ] if not os.path.isfile(model_path): raise Exception(f"Model file not found: {model_path}") print("Running imatrix command...") process = subprocess.Popen(imatrix_command, shell=False) try: process.wait(timeout=60) # added wait except subprocess.TimeoutExpired: print( "Imatrix computation timed out. Sending SIGINT to allow graceful termination..." ) process.send_signal(signal.SIGINT) try: process.wait(timeout=5) # grace period except subprocess.TimeoutExpired: print("Imatrix proc still didn't term. Forecfully terming process...") process.kill() print("Importance matrix generation completed.") def split_upload_model( model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None, org_token=None, export_to_org=False, ): print(f"Model path: {model_path}") print(f"Output dir: {outdir}") if oauth_token is None or oauth_token.token is None: raise ValueError("You have to be logged in.") split_cmd = [ "./llama.cpp/llama-gguf-split", "--split", ] if split_max_size: split_cmd.append("--split-max-size") split_cmd.append(split_max_size) else: split_cmd.append("--split-max-tensors") split_cmd.append(str(split_max_tensors)) # args for output model_path_prefix = ".".join( model_path.split(".")[:-1] ) # remove the file extension split_cmd.append(model_path) split_cmd.append(model_path_prefix) print(f"Split command: {split_cmd}") result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True) print(f"Split command stdout: {result.stdout}") print(f"Split command stderr: {result.stderr}") if result.returncode != 0: stderr_str = result.stderr.decode("utf-8") raise Exception(f"Error splitting the model: {stderr_str}") print("Model split successfully!") # remove the original model file if needed if os.path.exists(model_path): os.remove(model_path) model_file_prefix = model_path_prefix.split("/")[-1] print(f"Model file name prefix: {model_file_prefix}") sharded_model_files = [ f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf") ] if sharded_model_files: print(f"Sharded model files: {sharded_model_files}") if export_to_org and org_token != "": api = HfApi(token=org_token) else: api = HfApi(token=oauth_token.token) for file in sharded_model_files: file_path = os.path.join(outdir, file) print(f"Uploading file: {file_path}") try: api.upload_file( path_or_fileobj=file_path, path_in_repo=file, repo_id=repo_id, ) except Exception as e: raise Exception(f"Error uploading file {file_path}: {e}") else: raise Exception("No sharded files found.") print("Sharded model has been uploaded successfully!") def process_model( model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, export_to_org, repo_owner, org_token, oauth_token: gr.OAuthToken | None, ): if oauth_token is None or oauth_token.token is None: raise gr.Error("You must be logged in to use GGUF-my-repo") try: whoami(oauth_token.token) except Exception as e: raise gr.Error("You must be logged in to use GGUF-my-repo") user_info = whoami(oauth_token.token) username = user_info["name"] user_orgs = user_info.get("orgs", []) if not export_to_org: repo_owner = "self" current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") logger.info( f"Time {current_time}, Username {username}, Model_ID, {model_id}, q_method {','.join(q_method)}" ) repo_namespace = get_repo_namespace(repo_owner, username, user_orgs) model_name = model_id.split("/")[-1] try: api_token = ( org_token if (export_to_org and org_token != "") else oauth_token.token ) api = HfApi(token=api_token) dl_pattern = ["*.md", "*.json", "*.model"] pattern = ( "*.safetensors" if any( f.path.endswith(".safetensors") for f in api.list_repo_tree(repo_id=model_id, recursive=True) ) else "*.bin" ) dl_pattern += [pattern] os.makedirs(downloads_dir, exist_ok=True) os.makedirs(outputs_dir, exist_ok=True) with tempfile.TemporaryDirectory(dir=outputs_dir) as outdir: fp16 = str(Path(outdir) / f"{model_name}.fp16.gguf") with tempfile.TemporaryDirectory(dir=downloads_dir) as tmpdir: print(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Start download") logger.info( datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Start download" ) local_dir = Path(tmpdir) / model_name api.snapshot_download( repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern, ) config_dir = local_dir / "config.json" adapter_config_dir = local_dir / "adapter_config.json" if os.path.exists(adapter_config_dir) and not os.path.exists( config_dir ): raise Exception( "adapter_config.json is present. If converting LoRA, use GGUF-my-lora." ) print( datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Download successfully" ) logger.info( datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Download successfully" ) result = subprocess.run( [ "python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16, ], shell=False, capture_output=True, ) print( datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Converted to f16" ) logger.info( datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Converted to f16" ) if result.returncode != 0: raise Exception( f"Error converting to fp16: {result.stderr.decode()}" ) shutil.rmtree(downloads_dir) imatrix_path = Path(outdir) / "imatrix.dat" if use_imatrix: train_data_path = ( train_data_file.name if train_data_file else "llama.cpp/groups_merged.txt" ) if not os.path.isfile(train_data_path): raise Exception(f"Training data not found: {train_data_path}") generate_importance_matrix(fp16, train_data_path, imatrix_path) quant_methods = ( [imatrix_q_method] if use_imatrix else (q_method if isinstance(q_method, list) else [q_method]) ) suffix = "imat" if use_imatrix else None gguf_files = [] for method in quant_methods: print(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Begin quantize") logger.info( datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Begin quantize" ) name = ( f"{model_name.lower()}-{method.lower()}-{suffix}.gguf" if suffix else f"{model_name.lower()}-{method.lower()}.gguf" ) path = str(Path(outdir) / name) quant_cmd = ( [ "./llama.cpp/llama-quantize", "--imatrix", imatrix_path, fp16, path, method, ] if use_imatrix else ["./llama.cpp/llama-quantize", fp16, path, method] ) result = subprocess.run(quant_cmd, shell=False, capture_output=True) if result.returncode != 0: raise Exception( f"Quantization failed ({method}): {result.stderr.decode()}" ) size = os.path.getsize(path) / 1024 / 1024 / 1024 gguf_files.append((name, path, size, method)) print( datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Quantize successfully!" ) logger.info( datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Quantize successfully!" ) suffix_for_repo = ( f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods) ) repo_id = f"{repo_namespace}/{model_name}-GGUF" new_repo_url = api.create_repo( repo_id=repo_id, exist_ok=True, private=private_repo ) try: card = ModelCard.load(model_id, token=oauth_token.token) except: card = ModelCard("") card.data.tags = (card.data.tags or []) + ["llama-cpp", "gguf-my-repo"] card.data.base_model = model_id card.text = dedent( get_llama_cpp_notes(gguf_files, new_repo_url, split_model, model_id) ) readme_path = Path(outdir) / "README.md" card.save(readme_path) for name, path, _, _ in gguf_files: if split_model: split_upload_model( path, outdir, repo_id, oauth_token, split_max_tensors, split_max_size, org_token, export_to_org, ) else: api.upload_file( path_or_fileobj=path, path_in_repo=name, repo_id=repo_id ) if use_imatrix and os.path.isfile(imatrix_path): api.upload_file( path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=repo_id, ) api.upload_file( path_or_fileobj=readme_path, path_in_repo="README.md", repo_id=repo_id ) return ( f'

✅ DONE


Repo: {repo_id}', f"llama{np.random.randint(9)}.png", ) except Exception as e: return ( f'

❌ ERROR


{escape(str(e))}
', "error.png", ) css = """/* Custom CSS to allow scrolling */ .gradio-container {overflow-y: auto;} """ model_id = HuggingfaceHubSearch( label="Hub Model ID", placeholder="Search for model id on Huggingface", search_type="model", ) export_to_org = gr.Checkbox( label="Export to Organization Repository", value=False, info="If checked, you can select an organization to export to.", ) repo_owner = gr.Dropdown( choices=["self"], value="self", label="Repository Owner", visible=False ) org_token = gr.Textbox(label="Org Access Token", type="password", visible=False) q_method = gr.Dropdown( [ "Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0", ], label="Quantization Method", info="GGML quantization type", value="Q4_K_M", filterable=False, visible=True, multiselect=True, ) imatrix_q_method = gr.Dropdown( ["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"], label="Imatrix Quantization Method", info="GGML imatrix quants type", value="IQ4_NL", filterable=False, visible=False, ) use_imatrix = gr.Checkbox( value=False, label="Use Imatrix Quantization", info="Use importance matrix for quantization.", ) private_repo = gr.Checkbox( value=False, label="Private Repo", info="Create a private repo under your username." ) train_data_file = gr.File(label="Training Data File", file_types=["txt"], visible=False) split_model = gr.Checkbox( value=False, label="Split Model", info="Shard the model using gguf-split." ) split_max_tensors = gr.Number( value=256, label="Max Tensors per File", info="Maximum number of tensors per file when splitting model.", visible=False, ) split_max_size = gr.Textbox( label="Max File Size", info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G", visible=False, ) iface = gr.Interface( fn=process_model, inputs=[ model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, export_to_org, repo_owner, org_token, ], outputs=[gr.Markdown(label="Output"), gr.Image(show_label=False)], title="Make your own GGUF Quants — faster than ever before, believe me.", description="We take your Hugging Face repo — a terrific repo — we quantize it, we package it beautifully, and we give you your very own repo. It's smart. It's efficient. It's huge. You're gonna love it.", api_name=False, ) with gr.Blocks(css=".gradio-container {overflow-y: auto;}") as demo: gr.Markdown("Logged in, you must be. Classy, secure, and victorious, it keeps us.") gr.LoginButton(min_width=250) export_to_org.change( fn=toggle_repo_owner, inputs=[export_to_org], outputs=[repo_owner, org_token] ) split_model.change( fn=lambda sm: (gr.update(visible=sm), gr.update(visible=sm)), inputs=split_model, outputs=[split_max_tensors, split_max_size], ) use_imatrix.change( fn=lambda use: ( gr.update(visible=not use), gr.update(visible=use), gr.update(visible=use), ), inputs=use_imatrix, outputs=[q_method, imatrix_q_method, train_data_file], ) iface.render() def restart_space(): HfApi().restart_space( repo_id="Antigma/quantize-my-repo", token=HF_TOKEN, factory_reboot=True ) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=86400) scheduler.start() demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)