Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,7 @@ from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
|
11 |
from apscheduler.schedulers.background import BackgroundScheduler
|
12 |
from datetime import datetime
|
13 |
import numpy as np
|
|
|
14 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
15 |
|
16 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
@@ -204,7 +205,7 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
204 |
|
205 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
206 |
logger.info(f"Time {current_time}, Username {username}, Model_ID, {model_id}, q_method {','.join(q_method)}")
|
207 |
-
|
208 |
repo_namespace = get_repo_namespace(repo_owner, username, user_orgs)
|
209 |
model_name = model_id.split('/')[-1]
|
210 |
try:
|
@@ -225,7 +226,8 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
225 |
fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")
|
226 |
|
227 |
with tempfile.TemporaryDirectory(dir=downloads_dir) as tmpdir:
|
228 |
-
print("
|
|
|
229 |
local_dir = Path(tmpdir)/model_name
|
230 |
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
231 |
|
@@ -234,12 +236,15 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
234 |
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
|
235 |
raise Exception("adapter_config.json is present. If converting LoRA, use GGUF-my-lora.")
|
236 |
|
237 |
-
print("Download successfully")
|
|
|
238 |
result = subprocess.run(["python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16], shell=False, capture_output=True)
|
239 |
print("Converted to f16")
|
240 |
if result.returncode != 0:
|
241 |
raise Exception(f"Error converting to fp16: {result.stderr.decode()}")
|
242 |
|
|
|
|
|
243 |
imatrix_path = Path(outdir)/"imatrix.dat"
|
244 |
if use_imatrix:
|
245 |
train_data_path = train_data_file.name if train_data_file else "llama.cpp/groups_merged.txt"
|
@@ -252,7 +257,8 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
252 |
|
253 |
gguf_files = []
|
254 |
for method in quant_methods:
|
255 |
-
print("Begin quantize")
|
|
|
256 |
name = f"{model_name.lower()}-{method.lower()}-{suffix}.gguf" if suffix else f"{model_name.lower()}-{method.lower()}.gguf"
|
257 |
path = str(Path(outdir)/name)
|
258 |
quant_cmd = ["./llama.cpp/llama-quantize", "--imatrix", imatrix_path, fp16, path, method] if use_imatrix else ["./llama.cpp/llama-quantize", fp16, path, method]
|
@@ -262,7 +268,8 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
262 |
size = os.path.getsize(path)/1024/1024/1024
|
263 |
gguf_files.append((name, path, size, method))
|
264 |
|
265 |
-
print("Quantize successfully!")
|
|
|
266 |
suffix_for_repo = f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods)
|
267 |
repo_id = f"{repo_namespace}/{model_name}-{suffix_for_repo}-GGUF"
|
268 |
new_repo_url = api.create_repo(repo_id=repo_id, exist_ok=True, private=private_repo)
|
|
|
11 |
from apscheduler.schedulers.background import BackgroundScheduler
|
12 |
from datetime import datetime
|
13 |
import numpy as np
|
14 |
+
import shutil
|
15 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
16 |
|
17 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
|
|
205 |
|
206 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
207 |
logger.info(f"Time {current_time}, Username {username}, Model_ID, {model_id}, q_method {','.join(q_method)}")
|
208 |
+
|
209 |
repo_namespace = get_repo_namespace(repo_owner, username, user_orgs)
|
210 |
model_name = model_id.split('/')[-1]
|
211 |
try:
|
|
|
226 |
fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")
|
227 |
|
228 |
with tempfile.TemporaryDirectory(dir=downloads_dir) as tmpdir:
|
229 |
+
print(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Start download")
|
230 |
+
logger.info(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Start download")
|
231 |
local_dir = Path(tmpdir)/model_name
|
232 |
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
233 |
|
|
|
236 |
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
|
237 |
raise Exception("adapter_config.json is present. If converting LoRA, use GGUF-my-lora.")
|
238 |
|
239 |
+
print(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Download successfully")
|
240 |
+
logger.info(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Download successfully")
|
241 |
result = subprocess.run(["python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16], shell=False, capture_output=True)
|
242 |
print("Converted to f16")
|
243 |
if result.returncode != 0:
|
244 |
raise Exception(f"Error converting to fp16: {result.stderr.decode()}")
|
245 |
|
246 |
+
shutil.rmtree(downloads_dir)
|
247 |
+
|
248 |
imatrix_path = Path(outdir)/"imatrix.dat"
|
249 |
if use_imatrix:
|
250 |
train_data_path = train_data_file.name if train_data_file else "llama.cpp/groups_merged.txt"
|
|
|
257 |
|
258 |
gguf_files = []
|
259 |
for method in quant_methods:
|
260 |
+
print(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Begin quantize")
|
261 |
+
logger.info(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Begin quantize")
|
262 |
name = f"{model_name.lower()}-{method.lower()}-{suffix}.gguf" if suffix else f"{model_name.lower()}-{method.lower()}.gguf"
|
263 |
path = str(Path(outdir)/name)
|
264 |
quant_cmd = ["./llama.cpp/llama-quantize", "--imatrix", imatrix_path, fp16, path, method] if use_imatrix else ["./llama.cpp/llama-quantize", fp16, path, method]
|
|
|
268 |
size = os.path.getsize(path)/1024/1024/1024
|
269 |
gguf_files.append((name, path, size, method))
|
270 |
|
271 |
+
print(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Quantize successfully!")
|
272 |
+
logger.info(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Quantize successfully!")
|
273 |
suffix_for_repo = f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods)
|
274 |
repo_id = f"{repo_namespace}/{model_name}-{suffix_for_repo}-GGUF"
|
275 |
new_repo_url = api.create_repo(repo_id=repo_id, exist_ok=True, private=private_repo)
|