Spaces:
Runtime error
Runtime error
format
Browse files
app.py
CHANGED
@@ -21,21 +21,27 @@ os.makedirs(log_dir, exist_ok=True)
|
|
21 |
logging.basicConfig(
|
22 |
filename=os.path.join(log_dir, "app.log"),
|
23 |
level=logging.INFO,
|
24 |
-
format="%(asctime)s - %(levelname)s - %(message)s"
|
25 |
)
|
26 |
|
27 |
logger = logging.getLogger(__name__)
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
try:
|
31 |
result = subprocess.run(
|
32 |
-
[
|
33 |
stdout=subprocess.PIPE,
|
34 |
stderr=subprocess.PIPE,
|
35 |
check=True,
|
36 |
-
text=True
|
37 |
)
|
38 |
-
version = result.stdout.strip().split(
|
39 |
text = f"""
|
40 |
*Produced by [Antigma Labs](https://antigma.ai)*
|
41 |
## llama.cpp quantization
|
@@ -76,32 +82,51 @@ You can either specify a new local-dir (deepseek-ai_DeepSeek-V3-0324-Q8_0) or do
|
|
76 |
|
77 |
|
78 |
def get_repo_namespace(repo_owner, username, user_orgs):
|
79 |
-
if repo_owner ==
|
80 |
return username
|
81 |
for org in user_orgs:
|
82 |
-
if org[
|
83 |
-
return org[
|
84 |
raise ValueError(f"Invalid repo_owner: {repo_owner}")
|
85 |
|
|
|
86 |
def escape(s: str) -> str:
|
87 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
def toggle_repo_owner(export_to_org, oauth_token: gr.OAuthToken | None):
|
90 |
if oauth_token is None or oauth_token.token is None:
|
91 |
raise gr.Error("You must be logged in to use GGUF-my-repo")
|
92 |
if not export_to_org:
|
93 |
-
return gr.update(visible=False, choices=["self"], value="self"), gr.update(
|
|
|
|
|
94 |
info = whoami(oauth_token.token)
|
95 |
orgs = [org["name"] for org in info.get("orgs", [])]
|
96 |
-
return gr.update(visible=True, choices=["self"] + orgs, value="self"), gr.update(
|
|
|
|
|
|
|
|
|
97 |
def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
|
98 |
imatrix_command = [
|
99 |
"./llama.cpp/llama-imatrix",
|
100 |
-
"-m",
|
101 |
-
|
102 |
-
"-
|
103 |
-
|
104 |
-
"-
|
|
|
|
|
|
|
|
|
|
|
105 |
]
|
106 |
|
107 |
if not os.path.isfile(model_path):
|
@@ -113,7 +138,9 @@ def generate_importance_matrix(model_path: str, train_data_path: str, output_pat
|
|
113 |
try:
|
114 |
process.wait(timeout=60) # added wait
|
115 |
except subprocess.TimeoutExpired:
|
116 |
-
print(
|
|
|
|
|
117 |
process.send_signal(signal.SIGINT)
|
118 |
try:
|
119 |
process.wait(timeout=5) # grace period
|
@@ -123,7 +150,17 @@ def generate_importance_matrix(model_path: str, train_data_path: str, output_pat
|
|
123 |
|
124 |
print("Importance matrix generation completed.")
|
125 |
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
print(f"Model path: {model_path}")
|
128 |
print(f"Output dir: {outdir}")
|
129 |
|
@@ -142,7 +179,9 @@ def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token:
|
|
142 |
split_cmd.append(str(split_max_tensors))
|
143 |
|
144 |
# args for output
|
145 |
-
model_path_prefix =
|
|
|
|
|
146 |
split_cmd.append(model_path)
|
147 |
split_cmd.append(model_path_prefix)
|
148 |
|
@@ -161,15 +200,19 @@ def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token:
|
|
161 |
if os.path.exists(model_path):
|
162 |
os.remove(model_path)
|
163 |
|
164 |
-
model_file_prefix = model_path_prefix.split(
|
165 |
print(f"Model file name prefix: {model_file_prefix}")
|
166 |
-
sharded_model_files = [
|
|
|
|
|
|
|
|
|
167 |
if sharded_model_files:
|
168 |
print(f"Sharded model files: {sharded_model_files}")
|
169 |
-
if export_to_org and org_token!="":
|
170 |
-
|
171 |
else:
|
172 |
-
|
173 |
for file in sharded_model_files:
|
174 |
file_path = os.path.join(outdir, file)
|
175 |
print(f"Uploading file: {file_path}")
|
@@ -186,9 +229,22 @@ def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token:
|
|
186 |
|
187 |
print("Sharded model has been uploaded successfully!")
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
if oauth_token is None or oauth_token.token is None:
|
193 |
raise gr.Error("You must be logged in to use GGUF-my-repo")
|
194 |
|
@@ -198,91 +254,175 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
198 |
if not export_to_org:
|
199 |
repo_owner = "self"
|
200 |
|
201 |
-
|
202 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
203 |
-
logger.info(
|
|
|
|
|
204 |
|
205 |
repo_namespace = get_repo_namespace(repo_owner, username, user_orgs)
|
206 |
-
model_name = model_id.split(
|
207 |
try:
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
except Exception as e:
|
282 |
-
raise (
|
|
|
|
|
|
|
283 |
|
284 |
|
285 |
-
css="""/* Custom CSS to allow scrolling */
|
286 |
.gradio-container {overflow-y: auto;}
|
287 |
"""
|
288 |
model_id = HuggingfaceHubSearch(
|
@@ -294,30 +434,36 @@ model_id = HuggingfaceHubSearch(
|
|
294 |
export_to_org = gr.Checkbox(
|
295 |
label="Export to Organization Repository",
|
296 |
value=False,
|
297 |
-
info="If checked, you can select an organization to export to."
|
298 |
)
|
299 |
|
300 |
repo_owner = gr.Dropdown(
|
301 |
-
choices=["self"],
|
302 |
-
value="self",
|
303 |
-
label="Repository Owner",
|
304 |
-
visible=False
|
305 |
)
|
306 |
|
307 |
-
org_token = gr.Textbox(
|
308 |
-
label="Org Access Token",
|
309 |
-
type="password",
|
310 |
-
visible=False
|
311 |
-
)
|
312 |
|
313 |
q_method = gr.Dropdown(
|
314 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
label="Quantization Method",
|
316 |
info="GGML quantization type",
|
317 |
value="Q4_K_M",
|
318 |
filterable=False,
|
319 |
visible=True,
|
320 |
-
multiselect=True
|
321 |
)
|
322 |
|
323 |
imatrix_q_method = gr.Dropdown(
|
@@ -326,44 +472,36 @@ imatrix_q_method = gr.Dropdown(
|
|
326 |
info="GGML imatrix quants type",
|
327 |
value="IQ4_NL",
|
328 |
filterable=False,
|
329 |
-
visible=False
|
330 |
)
|
331 |
|
332 |
use_imatrix = gr.Checkbox(
|
333 |
value=False,
|
334 |
label="Use Imatrix Quantization",
|
335 |
-
info="Use importance matrix for quantization."
|
336 |
)
|
337 |
|
338 |
private_repo = gr.Checkbox(
|
339 |
-
value=False,
|
340 |
-
label="Private Repo",
|
341 |
-
info="Create a private repo under your username."
|
342 |
)
|
343 |
|
344 |
-
train_data_file = gr.File(
|
345 |
-
label="Training Data File",
|
346 |
-
file_types=["txt"],
|
347 |
-
visible=False
|
348 |
-
)
|
349 |
|
350 |
split_model = gr.Checkbox(
|
351 |
-
value=False,
|
352 |
-
label="Split Model",
|
353 |
-
info="Shard the model using gguf-split."
|
354 |
)
|
355 |
|
356 |
split_max_tensors = gr.Number(
|
357 |
value=256,
|
358 |
label="Max Tensors per File",
|
359 |
info="Maximum number of tensors per file when splitting model.",
|
360 |
-
visible=False
|
361 |
)
|
362 |
|
363 |
split_max_size = gr.Textbox(
|
364 |
label="Max File Size",
|
365 |
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G",
|
366 |
-
visible=False
|
367 |
)
|
368 |
|
369 |
iface = gr.Interface(
|
@@ -380,35 +518,47 @@ iface = gr.Interface(
|
|
380 |
split_max_size,
|
381 |
export_to_org,
|
382 |
repo_owner,
|
383 |
-
org_token
|
384 |
-
],
|
385 |
-
outputs=[
|
386 |
-
gr.Markdown(label="Output"),
|
387 |
-
gr.Image(show_label=False)
|
388 |
],
|
|
|
389 |
title="Make your own GGUF Quants — faster than ever before, believe me.",
|
390 |
description="We take your Hugging Face repo — a terrific repo — we quantize it, we package it beautifully, and we give you your very own repo. It's smart. It's efficient. It's huge. You're gonna love it.",
|
391 |
-
api_name=False
|
392 |
)
|
393 |
with gr.Blocks(css=".gradio-container {overflow-y: auto;}") as demo:
|
394 |
gr.Markdown("Logged in, you must be. Classy, secure, and victorious, it keeps us.")
|
395 |
gr.LoginButton(min_width=250)
|
396 |
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
split_model.change(
|
402 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
|
404 |
iface.render()
|
405 |
|
406 |
|
407 |
def restart_space():
|
408 |
-
HfApi().restart_space(
|
|
|
|
|
|
|
409 |
|
410 |
scheduler = BackgroundScheduler()
|
411 |
scheduler.add_job(restart_space, "interval", seconds=21600)
|
412 |
scheduler.start()
|
413 |
|
414 |
-
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
|
|
|
21 |
logging.basicConfig(
|
22 |
filename=os.path.join(log_dir, "app.log"),
|
23 |
level=logging.INFO,
|
24 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
25 |
)
|
26 |
|
27 |
logger = logging.getLogger(__name__)
|
28 |
|
29 |
+
|
30 |
+
def get_llama_cpp_notes(
|
31 |
+
gguf_files,
|
32 |
+
new_repo_url,
|
33 |
+
split_model,
|
34 |
+
model_id=None,
|
35 |
+
):
|
36 |
try:
|
37 |
result = subprocess.run(
|
38 |
+
["git", "-C", "./llama.cpp", "describe", "--tags", "--always"],
|
39 |
stdout=subprocess.PIPE,
|
40 |
stderr=subprocess.PIPE,
|
41 |
check=True,
|
42 |
+
text=True,
|
43 |
)
|
44 |
+
version = result.stdout.strip().split("-")[0]
|
45 |
text = f"""
|
46 |
*Produced by [Antigma Labs](https://antigma.ai)*
|
47 |
## llama.cpp quantization
|
|
|
82 |
|
83 |
|
84 |
def get_repo_namespace(repo_owner, username, user_orgs):
|
85 |
+
if repo_owner == "self":
|
86 |
return username
|
87 |
for org in user_orgs:
|
88 |
+
if org["name"] == repo_owner:
|
89 |
+
return org["name"]
|
90 |
raise ValueError(f"Invalid repo_owner: {repo_owner}")
|
91 |
|
92 |
+
|
93 |
def escape(s: str) -> str:
|
94 |
+
return (
|
95 |
+
s.replace("&", "&")
|
96 |
+
.replace("<", "<")
|
97 |
+
.replace(">", ">")
|
98 |
+
.replace('"', """)
|
99 |
+
.replace("\n", "<br/>")
|
100 |
+
)
|
101 |
+
|
102 |
|
103 |
def toggle_repo_owner(export_to_org, oauth_token: gr.OAuthToken | None):
|
104 |
if oauth_token is None or oauth_token.token is None:
|
105 |
raise gr.Error("You must be logged in to use GGUF-my-repo")
|
106 |
if not export_to_org:
|
107 |
+
return gr.update(visible=False, choices=["self"], value="self"), gr.update(
|
108 |
+
visible=False, value=""
|
109 |
+
)
|
110 |
info = whoami(oauth_token.token)
|
111 |
orgs = [org["name"] for org in info.get("orgs", [])]
|
112 |
+
return gr.update(visible=True, choices=["self"] + orgs, value="self"), gr.update(
|
113 |
+
visible=True
|
114 |
+
)
|
115 |
+
|
116 |
+
|
117 |
def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
|
118 |
imatrix_command = [
|
119 |
"./llama.cpp/llama-imatrix",
|
120 |
+
"-m",
|
121 |
+
model_path,
|
122 |
+
"-f",
|
123 |
+
train_data_path,
|
124 |
+
"-ngl",
|
125 |
+
"99",
|
126 |
+
"--output-frequency",
|
127 |
+
"10",
|
128 |
+
"-o",
|
129 |
+
output_path,
|
130 |
]
|
131 |
|
132 |
if not os.path.isfile(model_path):
|
|
|
138 |
try:
|
139 |
process.wait(timeout=60) # added wait
|
140 |
except subprocess.TimeoutExpired:
|
141 |
+
print(
|
142 |
+
"Imatrix computation timed out. Sending SIGINT to allow graceful termination..."
|
143 |
+
)
|
144 |
process.send_signal(signal.SIGINT)
|
145 |
try:
|
146 |
process.wait(timeout=5) # grace period
|
|
|
150 |
|
151 |
print("Importance matrix generation completed.")
|
152 |
|
153 |
+
|
154 |
+
def split_upload_model(
|
155 |
+
model_path: str,
|
156 |
+
outdir: str,
|
157 |
+
repo_id: str,
|
158 |
+
oauth_token: gr.OAuthToken | None,
|
159 |
+
split_max_tensors=256,
|
160 |
+
split_max_size=None,
|
161 |
+
org_token=None,
|
162 |
+
export_to_org=False,
|
163 |
+
):
|
164 |
print(f"Model path: {model_path}")
|
165 |
print(f"Output dir: {outdir}")
|
166 |
|
|
|
179 |
split_cmd.append(str(split_max_tensors))
|
180 |
|
181 |
# args for output
|
182 |
+
model_path_prefix = ".".join(
|
183 |
+
model_path.split(".")[:-1]
|
184 |
+
) # remove the file extension
|
185 |
split_cmd.append(model_path)
|
186 |
split_cmd.append(model_path_prefix)
|
187 |
|
|
|
200 |
if os.path.exists(model_path):
|
201 |
os.remove(model_path)
|
202 |
|
203 |
+
model_file_prefix = model_path_prefix.split("/")[-1]
|
204 |
print(f"Model file name prefix: {model_file_prefix}")
|
205 |
+
sharded_model_files = [
|
206 |
+
f
|
207 |
+
for f in os.listdir(outdir)
|
208 |
+
if f.startswith(model_file_prefix) and f.endswith(".gguf")
|
209 |
+
]
|
210 |
if sharded_model_files:
|
211 |
print(f"Sharded model files: {sharded_model_files}")
|
212 |
+
if export_to_org and org_token != "":
|
213 |
+
api = HfApi(token=org_token)
|
214 |
else:
|
215 |
+
api = HfApi(token=oauth_token.token)
|
216 |
for file in sharded_model_files:
|
217 |
file_path = os.path.join(outdir, file)
|
218 |
print(f"Uploading file: {file_path}")
|
|
|
229 |
|
230 |
print("Sharded model has been uploaded successfully!")
|
231 |
|
232 |
+
|
233 |
+
def process_model(
|
234 |
+
model_id,
|
235 |
+
q_method,
|
236 |
+
use_imatrix,
|
237 |
+
imatrix_q_method,
|
238 |
+
private_repo,
|
239 |
+
train_data_file,
|
240 |
+
split_model,
|
241 |
+
split_max_tensors,
|
242 |
+
split_max_size,
|
243 |
+
export_to_org,
|
244 |
+
repo_owner,
|
245 |
+
org_token,
|
246 |
+
oauth_token: gr.OAuthToken | None,
|
247 |
+
):
|
248 |
if oauth_token is None or oauth_token.token is None:
|
249 |
raise gr.Error("You must be logged in to use GGUF-my-repo")
|
250 |
|
|
|
254 |
if not export_to_org:
|
255 |
repo_owner = "self"
|
256 |
|
|
|
257 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
258 |
+
logger.info(
|
259 |
+
f"Time {current_time}, Username {username}, Model_ID, {model_id}, q_method {','.join(q_method)}"
|
260 |
+
)
|
261 |
|
262 |
repo_namespace = get_repo_namespace(repo_owner, username, user_orgs)
|
263 |
+
model_name = model_id.split("/")[-1]
|
264 |
try:
|
265 |
+
api_token = (
|
266 |
+
org_token if (export_to_org and org_token != "") else oauth_token.token
|
267 |
+
)
|
268 |
+
api = HfApi(token=api_token)
|
269 |
+
|
270 |
+
dl_pattern = ["*.md", "*.json", "*.model"]
|
271 |
+
pattern = (
|
272 |
+
"*.safetensors"
|
273 |
+
if any(
|
274 |
+
f.path.endswith(".safetensors")
|
275 |
+
for f in api.list_repo_tree(repo_id=model_id, recursive=True)
|
276 |
+
)
|
277 |
+
else "*.bin"
|
278 |
+
)
|
279 |
+
dl_pattern += [pattern]
|
280 |
+
|
281 |
+
os.makedirs("downloads", exist_ok=True)
|
282 |
+
os.makedirs("outputs", exist_ok=True)
|
283 |
+
|
284 |
+
with tempfile.TemporaryDirectory(dir="outputs") as outdir:
|
285 |
+
fp16 = str(Path(outdir) / f"{model_name}.fp16.gguf")
|
286 |
+
|
287 |
+
with tempfile.TemporaryDirectory(dir="downloads") as tmpdir:
|
288 |
+
local_dir = Path(tmpdir) / model_name
|
289 |
+
api.snapshot_download(
|
290 |
+
repo_id=model_id,
|
291 |
+
local_dir=local_dir,
|
292 |
+
local_dir_use_symlinks=False,
|
293 |
+
allow_patterns=dl_pattern,
|
294 |
+
)
|
295 |
+
|
296 |
+
config_dir = local_dir / "config.json"
|
297 |
+
adapter_config_dir = local_dir / "adapter_config.json"
|
298 |
+
if os.path.exists(adapter_config_dir) and not os.path.exists(
|
299 |
+
config_dir
|
300 |
+
):
|
301 |
+
raise Exception(
|
302 |
+
"adapter_config.json is present. If converting LoRA, use GGUF-my-lora."
|
303 |
+
)
|
304 |
+
|
305 |
+
result = subprocess.run(
|
306 |
+
[
|
307 |
+
"python",
|
308 |
+
CONVERSION_SCRIPT,
|
309 |
+
local_dir,
|
310 |
+
"--outtype",
|
311 |
+
"f16",
|
312 |
+
"--outfile",
|
313 |
+
fp16,
|
314 |
+
],
|
315 |
+
shell=False,
|
316 |
+
capture_output=True,
|
317 |
+
)
|
318 |
+
if result.returncode != 0:
|
319 |
+
raise Exception(
|
320 |
+
f"Error converting to fp16: {result.stderr.decode()}"
|
321 |
+
)
|
322 |
+
|
323 |
+
imatrix_path = Path(outdir) / "imatrix.dat"
|
324 |
+
if use_imatrix:
|
325 |
+
train_data_path = (
|
326 |
+
train_data_file.name
|
327 |
+
if train_data_file
|
328 |
+
else "llama.cpp/groups_merged.txt"
|
329 |
+
)
|
330 |
+
if not os.path.isfile(train_data_path):
|
331 |
+
raise Exception(f"Training data not found: {train_data_path}")
|
332 |
+
generate_importance_matrix(fp16, train_data_path, imatrix_path)
|
333 |
+
|
334 |
+
quant_methods = (
|
335 |
+
[imatrix_q_method]
|
336 |
+
if use_imatrix
|
337 |
+
else (q_method if isinstance(q_method, list) else [q_method])
|
338 |
+
)
|
339 |
+
suffix = "imat" if use_imatrix else None
|
340 |
+
|
341 |
+
gguf_files = []
|
342 |
+
for method in quant_methods:
|
343 |
+
name = (
|
344 |
+
f"{model_name.lower()}-{method.lower()}-{suffix}.gguf"
|
345 |
+
if suffix
|
346 |
+
else f"{model_name.lower()}-{method.lower()}.gguf"
|
347 |
+
)
|
348 |
+
path = str(Path(outdir) / name)
|
349 |
+
quant_cmd = (
|
350 |
+
[
|
351 |
+
"./llama.cpp/llama-quantize",
|
352 |
+
"--imatrix",
|
353 |
+
imatrix_path,
|
354 |
+
fp16,
|
355 |
+
path,
|
356 |
+
method,
|
357 |
+
]
|
358 |
+
if use_imatrix
|
359 |
+
else ["./llama.cpp/llama-quantize", fp16, path, method]
|
360 |
+
)
|
361 |
+
result = subprocess.run(quant_cmd, shell=False, capture_output=True)
|
362 |
+
if result.returncode != 0:
|
363 |
+
raise Exception(
|
364 |
+
f"Quantization failed ({method}): {result.stderr.decode()}"
|
365 |
+
)
|
366 |
+
size = os.path.getsize(path) / 1024 / 1024 / 1024
|
367 |
+
gguf_files.append((name, path, size, method))
|
368 |
+
|
369 |
+
suffix_for_repo = (
|
370 |
+
f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods)
|
371 |
+
)
|
372 |
+
repo_id = f"{repo_namespace}/{model_name}-{suffix_for_repo}-GGUF"
|
373 |
+
new_repo_url = api.create_repo(
|
374 |
+
repo_id=repo_id, exist_ok=True, private=private_repo
|
375 |
+
)
|
376 |
+
|
377 |
+
try:
|
378 |
+
card = ModelCard.load(model_id, token=oauth_token.token)
|
379 |
+
except:
|
380 |
+
card = ModelCard("")
|
381 |
+
card.data.tags = (card.data.tags or []) + ["llama-cpp", "gguf-my-repo"]
|
382 |
+
card.data.base_model = model_id
|
383 |
+
card.text = dedent(
|
384 |
+
get_llama_cpp_notes(gguf_files, new_repo_url, split_model, model_id)
|
385 |
+
)
|
386 |
+
readme_path = Path(outdir) / "README.md"
|
387 |
+
card.save(readme_path)
|
388 |
+
for name, path, _, _ in gguf_files:
|
389 |
+
if split_model:
|
390 |
+
split_upload_model(
|
391 |
+
path,
|
392 |
+
outdir,
|
393 |
+
repo_id,
|
394 |
+
oauth_token,
|
395 |
+
split_max_tensors,
|
396 |
+
split_max_size,
|
397 |
+
org_token,
|
398 |
+
export_to_org,
|
399 |
+
)
|
400 |
+
else:
|
401 |
+
api.upload_file(
|
402 |
+
path_or_fileobj=path, path_in_repo=name, repo_id=repo_id
|
403 |
+
)
|
404 |
+
if use_imatrix and os.path.isfile(imatrix_path):
|
405 |
+
api.upload_file(
|
406 |
+
path_or_fileobj=imatrix_path,
|
407 |
+
path_in_repo="imatrix.dat",
|
408 |
+
repo_id=repo_id,
|
409 |
+
)
|
410 |
+
api.upload_file(
|
411 |
+
path_or_fileobj=readme_path, path_in_repo="README.md", repo_id=repo_id
|
412 |
+
)
|
413 |
+
|
414 |
+
return (
|
415 |
+
f'<h1>✅ DONE</h1><br/>Repo: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{repo_id}</a>',
|
416 |
+
f"llama{np.random.randint(9)}.png",
|
417 |
+
)
|
418 |
except Exception as e:
|
419 |
+
raise (
|
420 |
+
f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>',
|
421 |
+
"error.png",
|
422 |
+
)
|
423 |
|
424 |
|
425 |
+
css = """/* Custom CSS to allow scrolling */
|
426 |
.gradio-container {overflow-y: auto;}
|
427 |
"""
|
428 |
model_id = HuggingfaceHubSearch(
|
|
|
434 |
export_to_org = gr.Checkbox(
|
435 |
label="Export to Organization Repository",
|
436 |
value=False,
|
437 |
+
info="If checked, you can select an organization to export to.",
|
438 |
)
|
439 |
|
440 |
repo_owner = gr.Dropdown(
|
441 |
+
choices=["self"], value="self", label="Repository Owner", visible=False
|
|
|
|
|
|
|
442 |
)
|
443 |
|
444 |
+
org_token = gr.Textbox(label="Org Access Token", type="password", visible=False)
|
|
|
|
|
|
|
|
|
445 |
|
446 |
q_method = gr.Dropdown(
|
447 |
+
[
|
448 |
+
"Q2_K",
|
449 |
+
"Q3_K_S",
|
450 |
+
"Q3_K_M",
|
451 |
+
"Q3_K_L",
|
452 |
+
"Q4_0",
|
453 |
+
"Q4_K_S",
|
454 |
+
"Q4_K_M",
|
455 |
+
"Q5_0",
|
456 |
+
"Q5_K_S",
|
457 |
+
"Q5_K_M",
|
458 |
+
"Q6_K",
|
459 |
+
"Q8_0",
|
460 |
+
],
|
461 |
label="Quantization Method",
|
462 |
info="GGML quantization type",
|
463 |
value="Q4_K_M",
|
464 |
filterable=False,
|
465 |
visible=True,
|
466 |
+
multiselect=True,
|
467 |
)
|
468 |
|
469 |
imatrix_q_method = gr.Dropdown(
|
|
|
472 |
info="GGML imatrix quants type",
|
473 |
value="IQ4_NL",
|
474 |
filterable=False,
|
475 |
+
visible=False,
|
476 |
)
|
477 |
|
478 |
use_imatrix = gr.Checkbox(
|
479 |
value=False,
|
480 |
label="Use Imatrix Quantization",
|
481 |
+
info="Use importance matrix for quantization.",
|
482 |
)
|
483 |
|
484 |
private_repo = gr.Checkbox(
|
485 |
+
value=False, label="Private Repo", info="Create a private repo under your username."
|
|
|
|
|
486 |
)
|
487 |
|
488 |
+
train_data_file = gr.File(label="Training Data File", file_types=["txt"], visible=False)
|
|
|
|
|
|
|
|
|
489 |
|
490 |
split_model = gr.Checkbox(
|
491 |
+
value=False, label="Split Model", info="Shard the model using gguf-split."
|
|
|
|
|
492 |
)
|
493 |
|
494 |
split_max_tensors = gr.Number(
|
495 |
value=256,
|
496 |
label="Max Tensors per File",
|
497 |
info="Maximum number of tensors per file when splitting model.",
|
498 |
+
visible=False,
|
499 |
)
|
500 |
|
501 |
split_max_size = gr.Textbox(
|
502 |
label="Max File Size",
|
503 |
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G",
|
504 |
+
visible=False,
|
505 |
)
|
506 |
|
507 |
iface = gr.Interface(
|
|
|
518 |
split_max_size,
|
519 |
export_to_org,
|
520 |
repo_owner,
|
521 |
+
org_token,
|
|
|
|
|
|
|
|
|
522 |
],
|
523 |
+
outputs=[gr.Markdown(label="Output"), gr.Image(show_label=False)],
|
524 |
title="Make your own GGUF Quants — faster than ever before, believe me.",
|
525 |
description="We take your Hugging Face repo — a terrific repo — we quantize it, we package it beautifully, and we give you your very own repo. It's smart. It's efficient. It's huge. You're gonna love it.",
|
526 |
+
api_name=False,
|
527 |
)
|
528 |
with gr.Blocks(css=".gradio-container {overflow-y: auto;}") as demo:
|
529 |
gr.Markdown("Logged in, you must be. Classy, secure, and victorious, it keeps us.")
|
530 |
gr.LoginButton(min_width=250)
|
531 |
|
532 |
+
export_to_org.change(
|
533 |
+
fn=toggle_repo_owner, inputs=[export_to_org], outputs=[repo_owner, org_token]
|
534 |
+
)
|
535 |
+
|
536 |
+
split_model.change(
|
537 |
+
fn=lambda sm: (gr.update(visible=sm), gr.update(visible=sm)),
|
538 |
+
inputs=split_model,
|
539 |
+
outputs=[split_max_tensors, split_max_size],
|
540 |
+
)
|
541 |
+
use_imatrix.change(
|
542 |
+
fn=lambda use: (
|
543 |
+
gr.update(visible=not use),
|
544 |
+
gr.update(visible=use),
|
545 |
+
gr.update(visible=use),
|
546 |
+
),
|
547 |
+
inputs=use_imatrix,
|
548 |
+
outputs=[q_method, imatrix_q_method, train_data_file],
|
549 |
+
)
|
550 |
|
551 |
iface.render()
|
552 |
|
553 |
|
554 |
def restart_space():
|
555 |
+
HfApi().restart_space(
|
556 |
+
repo_id="Antigma/quantize-my-repo", token=HF_TOKEN, factory_reboot=True
|
557 |
+
)
|
558 |
+
|
559 |
|
560 |
scheduler = BackgroundScheduler()
|
561 |
scheduler.add_job(restart_space, "interval", seconds=21600)
|
562 |
scheduler.start()
|
563 |
|
564 |
+
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
|