Spaces:
Runtime error
Runtime error
| import os | |
| import subprocess | |
| import signal | |
| import tempfile | |
| from pathlib import Path | |
| from textwrap import dedent | |
| import logging | |
| import gradio as gr | |
| from huggingface_hub import HfApi, ModelCard, whoami | |
| from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from datetime import datetime | |
| import numpy as np | |
| import shutil | |
| HF_TOKEN = os.environ.get("HF_TOKEN") | |
| os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
| CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py" | |
| log_dir = "/data/logs" | |
| downloads_dir = "/data/downloads" | |
| outputs_dir = "/data/outputs" | |
| os.makedirs(log_dir, exist_ok=True) | |
| logging.basicConfig( | |
| filename=os.path.join(log_dir, "app.log"), | |
| level=logging.INFO, | |
| format="%(asctime)s - %(levelname)s - %(message)s" | |
| ) | |
| logger = logging.getLogger(__name__) | |
| def get_llama_cpp_notes(gguf_files, new_repo_url, split_model, model_id = None,): | |
| try: | |
| result = subprocess.run( | |
| ['git', '-C', './llama.cpp', 'describe', '--tags', '--always'], | |
| stdout=subprocess.PIPE, | |
| stderr=subprocess.PIPE, | |
| check=True, | |
| text=True | |
| ) | |
| version = result.stdout.strip().split('-')[0] | |
| text = f""" | |
| *Produced by [Antigma Labs](https://antigma.ai)* | |
| ## llama.cpp quantization | |
| Using <a href="https://github.com/ggml-org/llama.cpp">llama.cpp</a> release <a href="https://github.com/ggml-org/llama.cpp/releases/tag/{version}">b4944</a> for quantization. | |
| Original model: https://huggingface.co/{model_id} | |
| Run them directly with [llama.cpp](https://github.com/ggml-org/llama.cpp), or any other llama.cpp based project | |
| ## Prompt format | |
| ``` | |
| <|begin▁of▁sentence|>{{system_prompt}}<|User|>{{prompt}}<|Assistant|><|end▁of▁sentence|><|Assistant|> | |
| ``` | |
| ## Download a file (not the whole branch) from below: | |
| | Filename | Quant type | File Size | Split | | |
| | -------- | ---------- | --------- | ----- | | |
| | {'|'.join(['|'.join([gguf_files[i][0][:-5] if split_model else ('['+gguf_files[i][0]+']'+'(' + new_repo_url+'/blob/main/'+gguf_files[i][0] + ')'), gguf_files[i][3], f"{gguf_files[i][2]:.2f}" + ' GB', str(split_model),''' | |
| ''']) for i in range(len(gguf_files))]) } | |
| ## Downloading using huggingface-cli | |
| <details> | |
| <summary>Click to view download instructions</summary> | |
| First, make sure you have hugginface-cli installed: | |
| ``` | |
| pip install -U "huggingface_hub[cli]" | |
| ``` | |
| Then, you can target the specific file you want: | |
| ``` | |
| huggingface-cli download {new_repo_url} --include "{gguf_files[0][0]}" --local-dir ./ | |
| ``` | |
| If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run: | |
| ``` | |
| huggingface-cli download {new_repo_url} --include "{gguf_files[0][0]}/*" --local-dir ./ | |
| ``` | |
| You can either specify a new local-dir (deepseek-ai_DeepSeek-V3-0324-Q8_0) or download them all in place (./) | |
| </details> | |
| """ | |
| return text | |
| except subprocess.CalledProcessError as e: | |
| print("Error:", e.stderr.strip()) | |
| return None | |
| def get_repo_namespace(repo_owner, username, user_orgs): | |
| if repo_owner == 'self': | |
| return username | |
| for org in user_orgs: | |
| if org['name'] == repo_owner: | |
| return org['name'] | |
| raise ValueError(f"Invalid repo_owner: {repo_owner}") | |
| def escape(s: str) -> str: | |
| return s.replace("&", "&").replace("<", "<").replace(">", ">").replace('"', """).replace("\n", "<br/>") | |
| def toggle_repo_owner(export_to_org, oauth_token: gr.OAuthToken | None): | |
| if oauth_token is None or oauth_token.token is None: | |
| raise gr.Error("You must be logged in to use GGUF-my-repo") | |
| if not export_to_org: | |
| return gr.update(visible=False, choices=["self"], value="self"), gr.update(visible=False, value="") | |
| info = whoami(oauth_token.token) | |
| orgs = [org["name"] for org in info.get("orgs", [])] | |
| return gr.update(visible=True, choices=["self"] + orgs, value="self"), gr.update(visible=True) | |
| def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str): | |
| imatrix_command = [ | |
| "./llama.cpp/llama-imatrix", | |
| "-m", model_path, | |
| "-f", train_data_path, | |
| "-ngl", "99", | |
| "--output-frequency", "10", | |
| "-o", output_path, | |
| ] | |
| if not os.path.isfile(model_path): | |
| raise Exception(f"Model file not found: {model_path}") | |
| print("Running imatrix command...") | |
| process = subprocess.Popen(imatrix_command, shell=False) | |
| try: | |
| process.wait(timeout=60) # added wait | |
| except subprocess.TimeoutExpired: | |
| print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...") | |
| process.send_signal(signal.SIGINT) | |
| try: | |
| process.wait(timeout=5) # grace period | |
| except subprocess.TimeoutExpired: | |
| print("Imatrix proc still didn't term. Forecfully terming process...") | |
| process.kill() | |
| print("Importance matrix generation completed.") | |
| def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None, org_token=None, export_to_org=False): | |
| print(f"Model path: {model_path}") | |
| print(f"Output dir: {outdir}") | |
| if oauth_token is None or oauth_token.token is None: | |
| raise ValueError("You have to be logged in.") | |
| split_cmd = [ | |
| "./llama.cpp/llama-gguf-split", | |
| "--split", | |
| ] | |
| if split_max_size: | |
| split_cmd.append("--split-max-size") | |
| split_cmd.append(split_max_size) | |
| else: | |
| split_cmd.append("--split-max-tensors") | |
| split_cmd.append(str(split_max_tensors)) | |
| # args for output | |
| model_path_prefix = '.'.join(model_path.split('.')[:-1]) # remove the file extension | |
| split_cmd.append(model_path) | |
| split_cmd.append(model_path_prefix) | |
| print(f"Split command: {split_cmd}") | |
| result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True) | |
| print(f"Split command stdout: {result.stdout}") | |
| print(f"Split command stderr: {result.stderr}") | |
| if result.returncode != 0: | |
| stderr_str = result.stderr.decode("utf-8") | |
| raise Exception(f"Error splitting the model: {stderr_str}") | |
| print("Model split successfully!") | |
| # remove the original model file if needed | |
| if os.path.exists(model_path): | |
| os.remove(model_path) | |
| model_file_prefix = model_path_prefix.split('/')[-1] | |
| print(f"Model file name prefix: {model_file_prefix}") | |
| sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")] | |
| if sharded_model_files: | |
| print(f"Sharded model files: {sharded_model_files}") | |
| if export_to_org and org_token!="": | |
| api = HfApi(token = org_token) | |
| else: | |
| api = HfApi(token=oauth_token.token) | |
| for file in sharded_model_files: | |
| file_path = os.path.join(outdir, file) | |
| print(f"Uploading file: {file_path}") | |
| try: | |
| api.upload_file( | |
| path_or_fileobj=file_path, | |
| path_in_repo=file, | |
| repo_id=repo_id, | |
| ) | |
| except Exception as e: | |
| raise Exception(f"Error uploading file {file_path}: {e}") | |
| else: | |
| raise Exception("No sharded files found.") | |
| print("Sharded model has been uploaded successfully!") | |
| def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, | |
| train_data_file, split_model, split_max_tensors, split_max_size, | |
| export_to_org, repo_owner, org_token, oauth_token: gr.OAuthToken | None): | |
| if oauth_token is None or oauth_token.token is None: | |
| raise gr.Error("You must be logged in to use GGUF-my-repo") | |
| user_info = whoami(oauth_token.token) | |
| username = user_info["name"] | |
| user_orgs = user_info.get("orgs", []) | |
| if not export_to_org: | |
| repo_owner = "self" | |
| current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| logger.info(f"Time {current_time}, Username {username}, Model_ID, {model_id}, q_method {','.join(q_method)}") | |
| repo_namespace = get_repo_namespace(repo_owner, username, user_orgs) | |
| model_name = model_id.split('/')[-1] | |
| try: | |
| api_token = org_token if (export_to_org and org_token!="") else oauth_token.token | |
| api = HfApi(token=api_token) | |
| dl_pattern = ["*.md", "*.json", "*.model"] | |
| pattern = "*.safetensors" if any( | |
| f.path.endswith(".safetensors") | |
| for f in api.list_repo_tree(repo_id=model_id, recursive=True) | |
| ) else "*.bin" | |
| dl_pattern += [pattern] | |
| os.makedirs(downloads_dir, exist_ok=True) | |
| os.makedirs(outputs_dir, exist_ok=True) | |
| with tempfile.TemporaryDirectory(dir=outputs_dir) as outdir: | |
| fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf") | |
| with tempfile.TemporaryDirectory(dir=downloads_dir) as tmpdir: | |
| local_dir = Path(tmpdir)/model_name | |
| print(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Start download") | |
| api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern) | |
| config_dir = local_dir/"config.json" | |
| adapter_config_dir = local_dir/"adapter_config.json" | |
| if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir): | |
| raise Exception("adapter_config.json is present. If converting LoRA, use GGUF-my-lora.") | |
| print(datetime.now().strftime("%Y-%m-%d %H:%M:%S")+" Download finished and start converting to fp16") | |
| result = subprocess.run(["python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16], shell=False, capture_output=True) | |
| if result.returncode != 0: | |
| raise Exception(f"Error converting to fp16: {result.stderr.decode()}") | |
| shutil.rmtree(downloads_dir) | |
| imatrix_path = Path(outdir)/"imatrix.dat" | |
| if use_imatrix: | |
| train_data_path = train_data_file.name if train_data_file else "llama.cpp/groups_merged.txt" | |
| if not os.path.isfile(train_data_path): | |
| raise Exception(f"Training data not found: {train_data_path}") | |
| generate_importance_matrix(fp16, train_data_path, imatrix_path) | |
| quant_methods = [imatrix_q_method] if use_imatrix else (q_method if isinstance(q_method, list) else [q_method]) | |
| suffix = "imat" if use_imatrix else None | |
| print(datetime.now().strftime("%Y-%m-%d %H:%M:%S")+" Converting finished, start to quantize") | |
| gguf_files = [] | |
| for method in quant_methods: | |
| name = f"{model_name.lower()}-{method.lower()}-{suffix}.gguf" if suffix else f"{model_name.lower()}-{method.lower()}.gguf" | |
| path = str(Path(outdir)/name) | |
| quant_cmd = ["./llama.cpp/llama-quantize", "--imatrix", imatrix_path, fp16, path, method] if use_imatrix else ["./llama.cpp/llama-quantize", fp16, path, method] | |
| result = subprocess.run(quant_cmd, shell=False, capture_output=True) | |
| if result.returncode != 0: | |
| raise Exception(f"Quantization failed ({method}): {result.stderr.decode()}") | |
| size = os.path.getsize(path)/1024/1024/1024 | |
| gguf_files.append((name, path, size, method)) | |
| suffix_for_repo = f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods) | |
| repo_id = f"{repo_namespace}/{model_name}-{suffix_for_repo}-GGUF" | |
| new_repo_url = api.create_repo(repo_id=repo_id, exist_ok=True, private=private_repo) | |
| try: | |
| card = ModelCard.load(model_id, token=oauth_token.token) | |
| except: | |
| card = ModelCard("") | |
| card.data.tags = (card.data.tags or []) + ["llama-cpp", "gguf-my-repo"] | |
| card.data.base_model = model_id | |
| card.text = dedent(get_llama_cpp_notes(gguf_files, new_repo_url, split_model, model_id)) | |
| readme_path = Path(outdir)/"README.md" | |
| card.save(readme_path) | |
| for name, path, _, _ in gguf_files: | |
| if split_model: | |
| split_upload_model(path, outdir, repo_id, oauth_token, split_max_tensors, split_max_size, org_token, export_to_org) | |
| else: | |
| api.upload_file(path_or_fileobj=path, path_in_repo=name, repo_id=repo_id) | |
| if use_imatrix and os.path.isfile(imatrix_path): | |
| api.upload_file(path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=repo_id) | |
| api.upload_file(path_or_fileobj=readme_path, path_in_repo="README.md", repo_id=repo_id) | |
| return (f'<h1>✅ DONE</h1><br/>Repo: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{repo_id}</a>', f"llama{np.random.randint(9)}.png") | |
| except Exception as e: | |
| raise (f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>', "error.png") | |
| css="""/* Custom CSS to allow scrolling */ | |
| .gradio-container {overflow-y: auto;} | |
| """ | |
| model_id = HuggingfaceHubSearch( | |
| label="Hub Model ID", | |
| placeholder="Search for model id on Huggingface", | |
| search_type="model", | |
| ) | |
| export_to_org = gr.Checkbox( | |
| label="Export to Organization Repository", | |
| value=False, | |
| info="If checked, you can select an organization to export to." | |
| ) | |
| repo_owner = gr.Dropdown( | |
| choices=["self"], | |
| value="self", | |
| label="Repository Owner", | |
| visible=False | |
| ) | |
| org_token = gr.Textbox( | |
| label="Org Access Token", | |
| type="password", | |
| visible=False | |
| ) | |
| q_method = gr.Dropdown( | |
| ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"], | |
| label="Quantization Method", | |
| info="GGML quantization type", | |
| value="Q4_K_M", | |
| filterable=False, | |
| visible=True, | |
| multiselect=True | |
| ) | |
| imatrix_q_method = gr.Dropdown( | |
| ["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"], | |
| label="Imatrix Quantization Method", | |
| info="GGML imatrix quants type", | |
| value="IQ4_NL", | |
| filterable=False, | |
| visible=False | |
| ) | |
| use_imatrix = gr.Checkbox( | |
| value=False, | |
| label="Use Imatrix Quantization", | |
| info="Use importance matrix for quantization." | |
| ) | |
| private_repo = gr.Checkbox( | |
| value=False, | |
| label="Private Repo", | |
| info="Create a private repo under your username." | |
| ) | |
| train_data_file = gr.File( | |
| label="Training Data File", | |
| file_types=["txt"], | |
| visible=False | |
| ) | |
| split_model = gr.Checkbox( | |
| value=False, | |
| label="Split Model", | |
| info="Shard the model using gguf-split." | |
| ) | |
| split_max_tensors = gr.Number( | |
| value=256, | |
| label="Max Tensors per File", | |
| info="Maximum number of tensors per file when splitting model.", | |
| visible=False | |
| ) | |
| split_max_size = gr.Textbox( | |
| label="Max File Size", | |
| info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G", | |
| visible=False | |
| ) | |
| iface = gr.Interface( | |
| fn=process_model, | |
| inputs=[ | |
| model_id, | |
| q_method, | |
| use_imatrix, | |
| imatrix_q_method, | |
| private_repo, | |
| train_data_file, | |
| split_model, | |
| split_max_tensors, | |
| split_max_size, | |
| export_to_org, | |
| repo_owner, | |
| org_token | |
| ], | |
| outputs=[ | |
| gr.Markdown(label="Output"), | |
| gr.Image(show_label=False) | |
| ], | |
| title="Make your own GGUF Quants — faster than ever before, believe me.", | |
| description="We take your Hugging Face repo — a terrific repo — we quantize it, we package it beautifully, and we give you your very own repo. It's smart. It's efficient. It's huge. You're gonna love it.", | |
| api_name=False | |
| ) | |
| with gr.Blocks(css=".gradio-container {overflow-y: auto;}") as demo: | |
| gr.Markdown("Logged in, you must be. Classy, secure, and victorious, it keeps us.") | |
| gr.LoginButton(min_width=250) | |
| export_to_org.change(fn=toggle_repo_owner, inputs=[export_to_org], outputs=[repo_owner, org_token]) | |
| split_model.change(fn=lambda sm: (gr.update(visible=sm), gr.update(visible=sm)), inputs=split_model, outputs=[split_max_tensors, split_max_size]) | |
| use_imatrix.change(fn=lambda use: (gr.update(visible=not use), gr.update(visible=use), gr.update(visible=use)), inputs=use_imatrix, outputs=[q_method, imatrix_q_method, train_data_file]) | |
| iface.render() | |
| def restart_space(): | |
| HfApi().restart_space(repo_id="Antigma/quantize-my-repo", token=HF_TOKEN, factory_reboot=True) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=21600) | |
| scheduler.start() | |
| demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) |