File size: 14,359 Bytes
57cd4b7
f2c9828
e88cde7
3081403
 
 
f574f6b
 
 
 
c12824a
f574f6b
c12824a
f574f6b
4425968
f574f6b
 
 
 
 
 
 
 
 
4425968
 
f574f6b
4425968
f574f6b
 
 
 
 
 
 
 
4425968
 
 
 
 
 
 
 
 
 
 
e88cde7
 
 
4425968
e88cde7
 
 
 
 
 
 
 
 
 
 
 
 
 
f574f6b
4425968
 
 
66cce51
441a3ff
f574f6b
4425968
 
 
 
441a3ff
4425968
 
 
 
 
 
 
 
 
 
 
f574f6b
 
4425968
f574f6b
 
 
441a3ff
4425968
 
441a3ff
4425968
 
 
 
 
 
f574f6b
4425968
441a3ff
 
f574f6b
 
 
 
441a3ff
4425968
441a3ff
 
 
 
 
 
 
 
 
 
 
f574f6b
441a3ff
 
f574f6b
 
 
b2c6134
359e454
1476b80
f574f6b
 
 
 
 
 
 
 
 
1476b80
f574f6b
ed379da
f574f6b
 
b8f09a7
f574f6b
 
 
 
 
 
3be0591
f574f6b
 
b8f09a7
f574f6b
 
839677f
f574f6b
 
 
e88cde7
f574f6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
839677f
f574f6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4425968
f574f6b
4425968
f574f6b
 
 
 
 
cafd485
3081403
839677f
33ed555
 
 
a89dc66
 
 
 
 
 
f574f6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a89dc66
 
 
 
 
 
f574f6b
 
a89dc66
 
 
 
 
 
f574f6b
a89dc66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f574f6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cafd485
f574f6b
a89dc66
 
 
441a3ff
f574f6b
 
 
 
 
 
 
f2c9828
a89dc66
c12824a
cafd485
c12824a
 
79c4836
c12824a
 
e9d0345
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import os
import subprocess
import signal
import tempfile
from pathlib import Path
from textwrap import dedent
import logging
import gradio as gr
from huggingface_hub import HfApi, ModelCard, whoami
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler
from datetime import datetime

os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
logger = logging.getLogger(__name__)

def get_repo_namespace(repo_owner, username, user_orgs):
    if repo_owner == 'self':
        return username
    for org in user_orgs:
        if org['name'] == repo_owner:
            return org['name']
    raise ValueError(f"Invalid repo_owner: {repo_owner}")

def escape(s: str) -> str:
    return s.replace("&", "&amp;").replace("<", "&lt;").replace(">", "&gt;").replace('"', "&quot;").replace("\n", "<br/>")

def toggle_repo_owner(export_to_org, oauth_token: gr.OAuthToken | None):
    if oauth_token is None or oauth_token.token is None:
        raise gr.Error("You must be logged in to use GGUF-my-repo")
    if not export_to_org:
        return gr.update(visible=False, choices=["self"], value="self"), gr.update(visible=False, value="")
    info = whoami(oauth_token.token)
    orgs = [org["name"] for org in info.get("orgs", [])]
    return gr.update(visible=True, choices=["self"] + orgs, value="self"), gr.update(visible=True)
def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
    imatrix_command = [
        "./llama.cpp/llama-imatrix",
        "-m", model_path,
        "-f", train_data_path,
        "-ngl", "99",
        "--output-frequency", "10",
        "-o", output_path,
    ]

    if not os.path.isfile(model_path):
        raise Exception(f"Model file not found: {model_path}")

    print("Running imatrix command...")
    process = subprocess.Popen(imatrix_command, shell=False)

    try:
        process.wait(timeout=60)  # added wait
    except subprocess.TimeoutExpired:
        print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...")
        process.send_signal(signal.SIGINT)
        try:
            process.wait(timeout=5)  # grace period
        except subprocess.TimeoutExpired:
            print("Imatrix proc still didn't term. Forecfully terming process...")
            process.kill()

    print("Importance matrix generation completed.")

def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None, org_token=None, export_to_org=False):
    print(f"Model path: {model_path}")
    print(f"Output dir: {outdir}")

    if oauth_token is None or oauth_token.token is None:
        raise ValueError("You have to be logged in.")

    split_cmd = [
        "./llama.cpp/llama-gguf-split",
        "--split",
    ]
    if split_max_size:
        split_cmd.append("--split-max-size")
        split_cmd.append(split_max_size)
    else:
        split_cmd.append("--split-max-tensors")
        split_cmd.append(str(split_max_tensors))

    # args for output
    model_path_prefix = '.'.join(model_path.split('.')[:-1]) # remove the file extension
    split_cmd.append(model_path)
    split_cmd.append(model_path_prefix)

    print(f"Split command: {split_cmd}")

    result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True)
    print(f"Split command stdout: {result.stdout}")
    print(f"Split command stderr: {result.stderr}")

    if result.returncode != 0:
        stderr_str = result.stderr.decode("utf-8")
        raise Exception(f"Error splitting the model: {stderr_str}")
    print("Model split successfully!")

    # remove the original model file if needed
    if os.path.exists(model_path):
        os.remove(model_path)

    model_file_prefix = model_path_prefix.split('/')[-1]
    print(f"Model file name prefix: {model_file_prefix}")
    sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")]
    if sharded_model_files:
        print(f"Sharded model files: {sharded_model_files}")
        if export_to_org and org_token!="":
          api = HfApi(token = org_token)
        else:
          api = HfApi(token=oauth_token.token)
        for file in sharded_model_files:
            file_path = os.path.join(outdir, file)
            print(f"Uploading file: {file_path}")
            try:
                api.upload_file(
                    path_or_fileobj=file_path,
                    path_in_repo=file,
                    repo_id=repo_id,
                )
            except Exception as e:
                raise Exception(f"Error uploading file {file_path}: {e}")
    else:
        raise Exception("No sharded files found.")

    print("Sharded model has been uploaded successfully!")

def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo,
                  train_data_file, split_model, split_max_tensors, split_max_size,
                  export_to_org, repo_owner, org_token, oauth_token: gr.OAuthToken | None):
    if oauth_token is None or oauth_token.token is None:
        raise gr.Error("You must be logged in to use GGUF-my-repo")

    user_info = whoami(oauth_token.token)
    username = user_info["name"]
    user_orgs = user_info.get("orgs", [])
    if not export_to_org:
        repo_owner = "self"


    current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    print(f"Time {current_time}, Username {username}, Model_ID, {model_id}, q_method {','.join(q_method)}")

    repo_namespace = get_repo_namespace(repo_owner, username, user_orgs)
    model_name = model_id.split('/')[-1]
    api_token = org_token if (export_to_org and org_token!="") else oauth_token.token
    api = HfApi(token=api_token)

    dl_pattern = ["*.md", "*.json", "*.model"]
    pattern = "*.safetensors" if any(
        f.path.endswith(".safetensors")
        for f in api.list_repo_tree(repo_id=model_id, recursive=True)
    ) else "*.bin"
    dl_pattern += [pattern]

    os.makedirs("downloads", exist_ok=True)
    os.makedirs("outputs", exist_ok=True)

    with tempfile.TemporaryDirectory(dir="outputs") as outdir:
        fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")

        with tempfile.TemporaryDirectory(dir="downloads") as tmpdir:
            local_dir = Path(tmpdir)/model_name
            api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)

            config_dir = local_dir/"config.json"
            adapter_config_dir = local_dir/"adapter_config.json"
            if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
                raise Exception("adapter_config.json is present. If converting LoRA, use GGUF-my-lora.")

            result = subprocess.run(["python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16], shell=False, capture_output=True)
            if result.returncode != 0:
                raise Exception(f"Error converting to fp16: {result.stderr.decode()}")

        imatrix_path = Path(outdir)/"imatrix.dat"
        if use_imatrix:
            train_data_path = train_data_file.name if train_data_file else "llama.cpp/groups_merged.txt"
            if not os.path.isfile(train_data_path):
                raise Exception(f"Training data not found: {train_data_path}")
            generate_importance_matrix(fp16, train_data_path, imatrix_path)

        quant_methods = [imatrix_q_method] if use_imatrix else (q_method if isinstance(q_method, list) else [q_method])
        suffix = "imat" if use_imatrix else None

        gguf_files = []
        for method in quant_methods:
            name = f"{model_name.lower()}-{method.lower()}-{suffix}.gguf" if suffix else f"{model_name.lower()}-{method.lower()}.gguf"
            path = str(Path(outdir)/name)
            quant_cmd = ["./llama.cpp/llama-quantize", "--imatrix", imatrix_path, fp16, path, method] if use_imatrix else ["./llama.cpp/llama-quantize", fp16, path, method]
            result = subprocess.run(quant_cmd, shell=False, capture_output=True)
            if result.returncode != 0:
                raise Exception(f"Quantization failed ({method}): {result.stderr.decode()}")
            gguf_files.append((name, path))

        suffix_for_repo = f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods)
        repo_id = f"{repo_namespace}/{model_name}-{suffix_for_repo}-GGUF"
        new_repo_url = api.create_repo(repo_id=repo_id, exist_ok=True, private=private_repo)

        try:
            card = ModelCard.load(model_id, token=oauth_token.token)
        except:
            card = ModelCard("")
        card.data.tags = (card.data.tags or []) + ["llama-cpp", "gguf-my-repo"]
        card.data.base_model = model_id
        card.text = dedent(f"""
            # {repo_id}
            Absolutely tremendous! This repo features **GGUF quantized** versions of [{model_id}](https://huggingface.co/{model_id}) — made possible using the *very powerful* `llama.cpp`. Believe me, it's fast, it's smart, it's winning.
            ## Quantized Versions:
            Only the best quantization. You’ll love it.
            ## Run with llama.cpp
            Just plug it in, hit the command line, and boom — you're running world-class AI, folks:
            ```bash
            llama-cli --hf-repo {repo_id} --hf-file {gguf_files[0][0]} -p "AI First, but also..."
            ```
            This beautiful Hugging Face Space was brought to you by the **amazing team at [Antigma Labs](https://antigma.ai)**. Great people. Big vision. Doing things that matter — and doing them right.
            Total winners.
        """)
        readme_path = Path(outdir)/"README.md"
        card.save(readme_path)
        for name, path in gguf_files:
            if split_model:
                split_upload_model(path, outdir, repo_id, oauth_token, split_max_tensors, split_max_size, org_token, export_to_org)
            else:
                api.upload_file(path_or_fileobj=path, path_in_repo=name, repo_id=repo_id)
        if use_imatrix and os.path.isfile(imatrix_path):
            api.upload_file(path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=repo_id)
        api.upload_file(path_or_fileobj=readme_path, path_in_repo="README.md", repo_id=repo_id)

        return (f'<h1>✅ DONE</h1><br/>Repo: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{repo_id}</a>', f"llama{np.random.randint(9)}.png")


css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""
model_id = HuggingfaceHubSearch(
    label="Hub Model ID",
    placeholder="Search for model id on Huggingface",
    search_type="model",
)

export_to_org = gr.Checkbox(
    label="Export to Organization Repository",
    value=False,
    info="If checked, you can select an organization to export to."
)

repo_owner = gr.Dropdown(
    choices=["self"],
    value="self",
    label="Repository Owner",
    visible=False
)

org_token = gr.Textbox(
    label="Org Access Token",
    type="password",
    visible=False
)

q_method = gr.Dropdown(
    ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
    label="Quantization Method",
    info="GGML quantization type",
    value="Q4_K_M",
    filterable=False,
    visible=True,
    multiselect=True
)

imatrix_q_method = gr.Dropdown(
    ["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
    label="Imatrix Quantization Method",
    info="GGML imatrix quants type",
    value="IQ4_NL",
    filterable=False,
    visible=False
)

use_imatrix = gr.Checkbox(
    value=False,
    label="Use Imatrix Quantization",
    info="Use importance matrix for quantization."
)

private_repo = gr.Checkbox(
    value=False,
    label="Private Repo",
    info="Create a private repo under your username."
)

train_data_file = gr.File(
    label="Training Data File",
    file_types=["txt"],
    visible=False
)

split_model = gr.Checkbox(
    value=False,
    label="Split Model",
    info="Shard the model using gguf-split."
)

split_max_tensors = gr.Number(
    value=256,
    label="Max Tensors per File",
    info="Maximum number of tensors per file when splitting model.",
    visible=False
)

split_max_size = gr.Textbox(
    label="Max File Size",
    info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G",
    visible=False
)

iface = gr.Interface(
    fn=process_model,
    inputs=[
        model_id,
        q_method,
        use_imatrix,
        imatrix_q_method,
        private_repo,
        train_data_file,
        split_model,
        split_max_tensors,
        split_max_size,
        export_to_org,
        repo_owner,
        org_token
    ],
    outputs=[
        gr.Markdown(label="Output"),
        gr.Image(show_label=False)
    ],
    title="Make your own GGUF Quants — faster than ever before, believe me.",
    description="We take your Hugging Face repo — a terrific repo — we quantize it, we package it beautifully, and we give you your very own repo. It's smart. It's efficient. It's huge. You're gonna love it.",
    api_name=False
)
with gr.Blocks(css=".gradio-container {overflow-y: auto;}",theme=gr.themes.Glass()) as demo:
    gr.Markdown("Logged in, you must be. Classy, secure, and victorious, it keeps us.")
    gr.LoginButton(min_width=250)



    export_to_org.change(fn=toggle_repo_owner, inputs=[export_to_org], outputs=[repo_owner, org_token])

    split_model.change(fn=lambda sm: (gr.update(visible=sm), gr.update(visible=sm)), inputs=split_model, outputs=[split_max_tensors, split_max_size])
    use_imatrix.change(fn=lambda use: (gr.update(visible=not use), gr.update(visible=use), gr.update(visible=use)), inputs=use_imatrix, outputs=[q_method, imatrix_q_method, train_data_file])

    iface.render()



def restart_space():
    HfApi().restart_space(repo_id="Antigma/quantize-my-repo", token=HF_TOKEN, factory_reboot=True)

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()

demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)