File size: 19,730 Bytes
57cd4b7
f2c9828
e88cde7
3081403
 
f574f6b
 
 
 
c12824a
f574f6b
a6e9176
a628a9f
47e5bd9
d898f74
fd089ea
897dd96
f574f6b
4425968
3ea29f2
 
8fbdf58
 
3ea29f2
 
 
 
 
d898f74
3ea29f2
 
f574f6b
 
d898f74
c8ce925
3ea29f2
 
d898f74
3ea29f2
 
 
d898f74
3ea29f2
d898f74
c8ce925
3ea29f2
c8ce925
3ea29f2
 
 
c8ce925
d898f74
f574f6b
 
d898f74
 
f574f6b
4425968
d898f74
4425968
d898f74
 
 
 
 
 
 
 
4425968
c8ce925
f574f6b
0e2eafc
f574f6b
d898f74
 
 
f574f6b
 
d898f74
 
 
 
 
c8ce925
 
 
4425968
 
d898f74
 
 
 
 
 
 
 
 
 
4425968
 
 
c8ce925
e88cde7
c8ce925
4425968
e88cde7
 
c8ce925
e88cde7
c8ce925
d898f74
 
e88cde7
 
c8ce925
e88cde7
c8ce925
 
 
e88cde7
 
c8ce925
e88cde7
d898f74
 
 
 
 
 
c8ce925
 
 
 
 
 
 
4425968
66cce51
441a3ff
f574f6b
c8ce925
441a3ff
c8ce925
4425968
c8ce925
4425968
c8ce925
 
4425968
c8ce925
f574f6b
4425968
c8ce925
 
f574f6b
441a3ff
c8ce925
 
4425968
 
 
 
d898f74
c8ce925
d898f74
 
 
 
 
c8ce925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47e5bd9
c8ce925
 
 
 
df88099
c8ce925
 
 
 
 
 
 
f574f6b
c8ce925
982b426
c8ce925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f574f6b
c8ce925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
441a3ff
d898f74
 
c8ce925
 
 
 
 
 
 
 
 
 
 
 
d898f74
c8ce925
b2c6134
0e2eafc
5f9a0f8
 
 
c8ce925
d898f74
f574f6b
 
 
 
 
 
 
d898f74
c8ce925
 
 
 
 
d898f74
5f9a0f8
f574f6b
d898f74
3ea29f2
c8ce925
d898f74
 
 
 
 
 
 
 
 
 
 
c8ce925
d898f74
 
 
 
 
 
 
 
c8ce925
d898f74
 
 
 
 
 
 
 
 
 
 
 
 
c8ce925
d898f74
 
c8ce925
d898f74
 
 
 
 
 
 
 
 
 
 
 
 
 
c8ce925
d898f74
 
c8ce925
d898f74
 
 
 
 
 
 
 
 
 
 
 
c8ce925
 
 
d898f74
 
 
 
 
 
 
 
 
 
 
c8ce925
d898f74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8ce925
d898f74
 
 
 
 
c8ce925
d898f74
 
 
 
 
 
 
 
 
 
c8ce925
 
 
 
 
 
d898f74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ea29f2
d898f74
 
 
 
3081403
839677f
d898f74
33ed555
 
c8ce925
a89dc66
 
 
 
 
 
f574f6b
 
 
d898f74
f574f6b
 
 
d898f74
f574f6b
 
d898f74
f574f6b
a89dc66
d898f74
 
 
 
 
 
 
 
 
 
 
 
 
 
a89dc66
 
 
 
f574f6b
d898f74
a89dc66
 
 
 
 
 
f574f6b
a89dc66
d898f74
a89dc66
 
 
 
 
d898f74
a89dc66
 
 
d898f74
a89dc66
 
d898f74
a89dc66
 
d898f74
a89dc66
 
 
 
 
 
d898f74
a89dc66
 
 
 
 
d898f74
a89dc66
 
 
f574f6b
 
 
 
 
 
 
 
 
 
 
 
 
d898f74
f574f6b
d898f74
f574f6b
 
d898f74
f574f6b
c8ce925
3ea29f2
f574f6b
a89dc66
 
d898f74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f574f6b
 
 
f2c9828
c12824a
d898f74
 
 
 
c12824a
 
d898f74
c12824a
 
d898f74
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
import os
import subprocess
import signal
import tempfile
from pathlib import Path
import logging
import gradio as gr
from huggingface_hub import HfApi, ModelCard, whoami
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler
from datetime import datetime
import numpy as np
import shutil
from copy import deepcopy

HF_TOKEN = os.environ.get("HF_TOKEN")

os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"

log_dir = "/data/logs"
downloads_dir = "/data/downloads"
outputs_dir = "/data/outputs"
os.makedirs(log_dir, exist_ok=True)

logging.basicConfig(
    filename=os.path.join(log_dir, "app.log"),
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s",
)

logger = logging.getLogger(__name__)


def get_llama_cpp_version():
    try:
        result = subprocess.run(
            ["git", "-C", "./llama.cpp", "describe", "--tags", "--always"],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            check=True,
            text=True,
        )
        version = result.stdout.strip().split("-")[0]
        return version
    except subprocess.CalledProcessError as e:
        logger.error("Error getting llama.cpp version: %s", e.stderr.strip())
        return None


def get_repo_namespace(repo_owner: str, username: str, user_orgs: list) -> str:
    if repo_owner == "self":
        return username
    for org in user_orgs:
        if org["name"] == repo_owner:
            return org["name"]
    raise ValueError(f"Invalid repo_owner: {repo_owner}")


def escape(s: str) -> str:
    return (
        s.replace("&", "&")
        .replace("<", "&lt;")
        .replace(">", "&gt;")
        .replace('"', "&quot;")
        .replace("\n", "<br/>")
    )


def toggle_repo_owner(export_to_org: bool, oauth_token: gr.OAuthToken | None) -> tuple:
    if oauth_token is None or oauth_token.token is None:
        raise gr.Error("You must be logged in to use quantize-my-repo")
    if not export_to_org:
        return gr.update(visible=False, choices=["self"], value="self"), gr.update(
            visible=False, value=""
        )
    info = whoami(oauth_token.token)
    orgs = [org["name"] for org in info.get("orgs", [])]
    return gr.update(visible=True, choices=["self"] + orgs, value="self"), gr.update(
        visible=True
    )


def generate_importance_matrix(
    model_path: str, train_data_path: str, output_path: str
) -> None:
    imatrix_command = [
        "./llama.cpp/llama-imatrix",
        "-m",
        model_path,
        "-f",
        train_data_path,
        "-ngl",
        "99",
        "--output-frequency",
        "10",
        "-o",
        output_path,
    ]

    if not os.path.isfile(model_path):
        raise FileNotFoundError(f"Model file not found: {model_path}")

    logger.info("Running imatrix command...")
    process = subprocess.Popen(imatrix_command, shell=False)

    try:
        process.wait(timeout=60)
    except subprocess.TimeoutExpired:
        logger.warning(
            "Imatrix computation timed out. Sending SIGINT to allow graceful termination..."
        )
        process.send_signal(signal.SIGINT)
        try:
            process.wait(timeout=5)
        except subprocess.TimeoutExpired:
            logger.error(
                "Imatrix proc still didn't term. Forecfully terming process..."
            )
            process.kill()

    logger.info("Importance matrix generation completed.")


def split_upload_model(
    model_path: str,
    outdir: str,
    repo_id: str,
    oauth_token: gr.OAuthToken | None,
    split_max_tensors: int = 256,
    split_max_size: str | None = None,
    org_token: str | None = None,
    export_to_org: bool = False,
) -> None:
    logger.info("Model path: %s", model_path)
    logger.info("Output dir: %s", outdir)

    if oauth_token is None or oauth_token.token is None:
        raise ValueError("You have to be logged in.")

    split_cmd = ["./llama.cpp/llama-gguf-split", "--split"]
    if split_max_size:
        split_cmd.extend(["--split-max-size", split_max_size])
    else:
        split_cmd.extend(["--split-max-tensors", str(split_max_tensors)])

    model_path_prefix = ".".join(model_path.split(".")[:-1])
    split_cmd.extend([model_path, model_path_prefix])

    logger.info("Split command: %s", split_cmd)

    result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True)
    logger.info("Split command stdout: %s", result.stdout)
    logger.info("Split command stderr: %s", result.stderr)

    if result.returncode != 0:
        raise RuntimeError(f"Error splitting the model: {result.stderr}")
    logger.info("Model split successfully!")

    if os.path.exists(model_path):
        os.remove(model_path)

    model_file_prefix = model_path_prefix.split("/")[-1]
    logger.info("Model file name prefix: %s", model_file_prefix)
    sharded_model_files = [
        f
        for f in os.listdir(outdir)
        if f.startswith(model_file_prefix) and f.endswith(".gguf")
    ]

    if not sharded_model_files:
        raise RuntimeError("No sharded files found.")

    logger.info("Sharded model files: %s", sharded_model_files)
    api = HfApi(token=org_token if (export_to_org and org_token) else oauth_token.token)

    for file in sharded_model_files:
        file_path = os.path.join(outdir, file)
        logger.info("Uploading file: %s", file_path)
        try:
            api.upload_file(
                path_or_fileobj=file_path,
                path_in_repo=file,
                repo_id=repo_id,
            )
        except Exception as e:
            raise RuntimeError(f"Error uploading file {file_path}: {e}") from e

    logger.info("Sharded model has been uploaded successfully!")


def get_new_model_card(
    original_card: ModelCard,
    original_model_id: str,
    gguf_files: list,
    new_repo_url: str,
    split_model: bool,
) -> ModelCard:
    version = get_llama_cpp_version()
    model_card = deepcopy(original_card)
    model_card.data.tags = (model_card.data.tags or []) + [
        "antigma",
        "quantize-my-repo",
    ]
    model_card.data.base_model = original_model_id

    # Format the table rows
    table_rows = []
    for file_info in gguf_files:
        name, _, size, method = file_info
        if split_model:
            display_name = name[:-5]
        else:
            display_name = f"[{name}]({new_repo_url}/blob/main/{name})"
        table_rows.append(f"{display_name}|{method}|{size:.2f} GB|{split_model}|\n")

    model_card.text = f"""
*Produced by [Antigma Labs](https://antigma.ai), [Antigma Quantize Space](https://huggingface.co/spaces/Antigma/quantize-my-repo)*

*Follow Antigma Labs in X [https://x.com/antigma_labs](https://x.com/antigma_labs)*

*Antigma's GitHub Homepage [https://github.com/AntigmaLabs](https://github.com/AntigmaLabs)*

## Quantization Format (GGUF)
We use <a href="https://github.com/ggml-org/llama.cpp">llama.cpp</a> release <a href="https://github.com/ggml-org/llama.cpp/releases/tag/{version}">{version}</a> for quantization.
Original model: https://huggingface.co/{original_model_id}

## Download a file (not the whole branch) from below:
| Filename | Quant type | File Size | Split |
| -------- | ---------- | --------- | ----- |
| {'|'.join(table_rows)}

## Original Model Card
{original_card.text}

## Downloading using huggingface-cli
<details>
  <summary>Click to view download instructions</summary>
First, make sure you have hugginface-cli installed:

```
pip install -U "huggingface_hub[cli]"
```

Then, you can target the specific file you want:

```
huggingface-cli download {new_repo_url} --include "{gguf_files[0][0]}" --local-dir ./
```

If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:

```
huggingface-cli download {new_repo_url} --include "{gguf_files[0][0]}/*" --local-dir ./
```

You can either specify a new local-dir (e.g. deepseek-ai_DeepSeek-V3-0324-Q8_0) or it will be in default hugging face cache

</details>
"""
    return model_card


def process_model(
    model_id: str,
    q_method: str | list,
    use_imatrix: bool,
    imatrix_q_method: str,
    private_repo: bool,
    train_data_file: gr.File | None,
    split_model: bool,
    split_max_tensors: int,
    split_max_size: str | None,
    export_to_org: bool,
    repo_owner: str,
    org_token: str | None,
    oauth_token: gr.OAuthToken | None,
) -> tuple[str, str]:
    if oauth_token is None or oauth_token.token is None:
        raise gr.Error("You must be logged in to use quantize-my-repo")
    try:
        whoami(oauth_token.token)
    except Exception as e:
        raise gr.Error("You must be logged in to use quantize-my-repo") from e

    user_info = whoami(oauth_token.token)
    username = user_info["name"]
    user_orgs = user_info.get("orgs", [])
    if not export_to_org:
        repo_owner = "self"

    current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    logger.info(
        "Time %s, Username %s, Model_ID %s, q_method %s",
        current_time,
        username,
        model_id,
        ",".join(q_method) if isinstance(q_method, list) else q_method,
    )

    repo_namespace = get_repo_namespace(repo_owner, username, user_orgs)
    model_name = model_id.split("/")[-1]
    try:
        api_token = org_token if (export_to_org and org_token) else oauth_token.token
        api = HfApi(token=api_token)

        dl_pattern = ["*.md", "*.json", "*.model"]
        pattern = (
            "*.safetensors"
            if any(
                f.path.endswith(".safetensors")
                for f in api.list_repo_tree(repo_id=model_id, recursive=True)
            )
            else "*.bin"
        )
        dl_pattern.append(pattern)

        os.makedirs(downloads_dir, exist_ok=True)
        os.makedirs(outputs_dir, exist_ok=True)

        with tempfile.TemporaryDirectory(dir=outputs_dir) as outdir:
            fp16 = str(Path(outdir) / f"{model_name}.fp16.gguf")

            with tempfile.TemporaryDirectory(dir=downloads_dir) as tmpdir:
                logger.info("Start download")
                local_dir = Path(tmpdir) / model_name
                api.snapshot_download(
                    repo_id=model_id,
                    local_dir=local_dir,
                    local_dir_use_symlinks=False,
                    allow_patterns=dl_pattern,
                )

                config_dir = local_dir / "config.json"
                adapter_config_dir = local_dir / "adapter_config.json"
                if os.path.exists(adapter_config_dir) and not os.path.exists(
                    config_dir
                ):
                    raise RuntimeError(
                        "adapter_config.json is present. If converting LoRA, use GGUF-my-lora."
                    )
                logger.info("Download successfully")

                result = subprocess.run(
                    [
                        "python",
                        CONVERSION_SCRIPT,
                        local_dir,
                        "--outtype",
                        "f16",
                        "--outfile",
                        fp16,
                    ],
                    shell=False,
                    capture_output=True,
                )
                logger.info("Converted to f16")

                if result.returncode != 0:
                    raise RuntimeError(
                        f"Error converting to fp16: {result.stderr.decode()}"
                    )
            shutil.rmtree(downloads_dir)

            imatrix_path = Path(outdir) / "imatrix.dat"
            if use_imatrix:
                train_data_path = (
                    train_data_file.name
                    if train_data_file
                    else "llama.cpp/groups_merged.txt"
                )
                if not os.path.isfile(train_data_path):
                    raise FileNotFoundError(
                        f"Training data not found: {train_data_path}"
                    )
                generate_importance_matrix(fp16, train_data_path, imatrix_path)

            quant_methods = (
                [imatrix_q_method]
                if use_imatrix
                else (q_method if isinstance(q_method, list) else [q_method])
            )
            suffix = "imat" if use_imatrix else None

            gguf_files = []
            for method in quant_methods:
                logger.info("Begin quantize")
                name = (
                    f"{model_name.lower()}-{method.lower()}-{suffix}.gguf"
                    if suffix
                    else f"{model_name.lower()}-{method.lower()}.gguf"
                )
                path = str(Path(outdir) / name)
                quant_cmd = (
                    [
                        "./llama.cpp/llama-quantize",
                        "--imatrix",
                        imatrix_path,
                        fp16,
                        path,
                        method,
                    ]
                    if use_imatrix
                    else ["./llama.cpp/llama-quantize", fp16, path, method]
                )
                result = subprocess.run(quant_cmd, shell=False, capture_output=True)
                if result.returncode != 0:
                    raise RuntimeError(
                        f"Quantization failed ({method}): {result.stderr.decode()}"
                    )
                size = os.path.getsize(path) / 1024 / 1024 / 1024
                gguf_files.append((name, path, size, method))

            logger.info("Quantize successfully!")

            suffix_for_repo = (
                f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods)
            )
            repo_id = f"{repo_namespace}/{model_name}-GGUF"
            new_repo_url = api.create_repo(
                repo_id=repo_id, exist_ok=True, private=private_repo
            )

            try:
                original_card = ModelCard.load(model_id, token=oauth_token.token)
            except Exception:
                original_card = ModelCard("")

            card = get_new_model_card(
                original_card, model_id, gguf_files, new_repo_url, split_model
            )
            readme_path = Path(outdir) / "README.md"
            card.save(readme_path)
            for name, path, _, _ in gguf_files:
                if split_model:
                    split_upload_model(
                        path,
                        outdir,
                        repo_id,
                        oauth_token,
                        split_max_tensors,
                        split_max_size,
                        org_token,
                        export_to_org,
                    )
                else:
                    api.upload_file(
                        path_or_fileobj=path, path_in_repo=name, repo_id=repo_id
                    )
            if use_imatrix and os.path.isfile(imatrix_path):
                api.upload_file(
                    path_or_fileobj=imatrix_path,
                    path_in_repo="imatrix.dat",
                    repo_id=repo_id,
                )
            api.upload_file(
                path_or_fileobj=readme_path, path_in_repo="README.md", repo_id=repo_id
            )

            return (
                f'<h1>✅ DONE</h1><br/>Repo: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{repo_id}</a>',
                f"llama{np.random.randint(9)}.png",
            )
    except Exception as e:
        return (
            f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>',
            "error.png",
        )


css = """/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""

model_id = HuggingfaceHubSearch(
    label="Hub Model ID",
    placeholder="Search for model id on Huggingface",
    search_type="model",
)

export_to_org = gr.Checkbox(
    label="Export to Organization Repository",
    value=False,
    info="If checked, you can select an organization to export to.",
)

repo_owner = gr.Dropdown(
    choices=["self"], value="self", label="Repository Owner", visible=False
)

org_token = gr.Textbox(label="Org Access Token", type="password", visible=False)

q_method = gr.Dropdown(
    [
        "Q2_K",
        "Q3_K_S",
        "Q3_K_M",
        "Q3_K_L",
        "Q4_0",
        "Q4_K_S",
        "Q4_K_M",
        "Q5_0",
        "Q5_K_S",
        "Q5_K_M",
        "Q6_K",
        "Q8_0",
    ],
    label="Quantization Method",
    info="GGML quantization type",
    value="Q4_K_M",
    filterable=False,
    visible=True,
    multiselect=True,
)

imatrix_q_method = gr.Dropdown(
    ["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
    label="Imatrix Quantization Method",
    info="GGML imatrix quants type",
    value="IQ4_NL",
    filterable=False,
    visible=False,
)

use_imatrix = gr.Checkbox(
    value=False,
    label="Use Imatrix Quantization",
    info="Use importance matrix for quantization.",
)

private_repo = gr.Checkbox(
    value=False, label="Private Repo", info="Create a private repo under your username."
)

train_data_file = gr.File(label="Training Data File", file_types=["txt"], visible=False)

split_model = gr.Checkbox(
    value=False, label="Split Model", info="Shard the model using gguf-split."
)

split_max_tensors = gr.Number(
    value=256,
    label="Max Tensors per File",
    info="Maximum number of tensors per file when splitting model.",
    visible=False,
)

split_max_size = gr.Textbox(
    label="Max File Size",
    info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G",
    visible=False,
)

iface = gr.Interface(
    fn=process_model,
    inputs=[
        model_id,
        q_method,
        use_imatrix,
        imatrix_q_method,
        private_repo,
        train_data_file,
        split_model,
        split_max_tensors,
        split_max_size,
        export_to_org,
        repo_owner,
        org_token,
    ],
    outputs=[gr.Markdown(label="Output"), gr.Image(show_label=False)],
    title="Make your own GGUF Quants — faster than ever before, believe me.",
    description="We take your Hugging Face repo — a terrific repo — we quantize it, we package it beautifully, and we give you your very own repo. It's smart. It's efficient. It's huge. You're gonna love it.",
    api_name=False,
)

with gr.Blocks(css=".gradio-container {overflow-y: auto;}") as demo:
    gr.Markdown("Logged in, you must be. Classy, secure, and victorious, it keeps us.")
    gr.LoginButton(min_width=250)

    export_to_org.change(
        fn=toggle_repo_owner, inputs=[export_to_org], outputs=[repo_owner, org_token]
    )

    split_model.change(
        fn=lambda sm: (gr.update(visible=sm), gr.update(visible=sm)),
        inputs=split_model,
        outputs=[split_max_tensors, split_max_size],
    )
    use_imatrix.change(
        fn=lambda use: (
            gr.update(visible=not use),
            gr.update(visible=use),
            gr.update(visible=use),
        ),
        inputs=use_imatrix,
        outputs=[q_method, imatrix_q_method, train_data_file],
    )

    iface.render()


def restart_space():
    HfApi().restart_space(
        repo_id="Antigma/quantize-my-repo", token=HF_TOKEN, factory_reboot=True
    )


scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=86400)
scheduler.start()

demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)