import pandas as pd import gradio as gr from fastapi import FastAPI, Request from fastapi.responses import JSONResponse, RedirectResponse from fastapi.middleware.cors import CORSMiddleware from retriever import get_relevant_passages from reranker import rerank # === Create FastAPI App === app = FastAPI(title="SHL Assessment Recommender API") # Add CORS middleware to allow cross-origin requests app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # === Load and Clean CSV === def clean_df(df): df = df.copy() second_col = df.iloc[:, 2].astype(str) if second_col.str.contains('http').any() or second_col.str.contains('www').any(): df["url"] = second_col else: df["url"] = "https://www.shl.com" + second_col.str.replace(r'^(?!/)', '/', regex=True) df["remote_support"] = df.iloc[:, 3].map(lambda x: "Yes" if x == "T" else "No") df["adaptive_support"] = df.iloc[:, 4].map(lambda x: "Yes" if x == "T" else "No") df["test_type"] = df.iloc[:, 5].apply(lambda x: eval(x) if isinstance(x, str) else x) df["description"] = df.iloc[:, 6] df["duration"] = pd.to_numeric(df.iloc[:, 9].astype(str).str.extract(r'(\d+)')[0], errors='coerce') return df[["url", "adaptive_support", "remote_support", "description", "duration", "test_type"]] try: df = pd.read_csv("assesments.csv", encoding='utf-8') df_clean = clean_df(df) print(f"Successfully loaded {len(df_clean)} assessments") except Exception as e: print(f"Error loading data: {e}") df_clean = pd.DataFrame(columns=["url", "adaptive_support", "remote_support", "description", "duration", "test_type"]) # === Utility === def validate_and_fix_urls(candidates): for candidate in candidates: if not isinstance(candidate, dict): continue if 'url' not in candidate or not candidate['url']: candidate['url'] = 'https://www.shl.com/missing-url' continue url = str(candidate['url']) if url.isdigit(): candidate['url'] = f"https://www.shl.com/{url}" continue if not url.startswith(('http://', 'https://')): candidate['url'] = f"https://www.shl.com{url}" if url.startswith('/') else f"https://www.shl.com/{url}" return candidates # === Recommendation Logic === def recommend(query): if not query or not query.strip(): return {"error": "Please enter a job description"} try: top_k_df = get_relevant_passages(query, df_clean, top_k=20) if top_k_df.empty: return {"error": "No matching assessments found"} top_k_df['test_type'] = top_k_df['test_type'].apply( lambda x: x if isinstance(x, list) else (eval(x) if isinstance(x, str) and x.startswith('[') else [str(x)]) ) top_k_df['duration'] = top_k_df['duration'].fillna(-1).astype(int) top_k_df.loc[top_k_df['duration'] == -1, 'duration'] = None candidates = top_k_df.to_dict(orient="records") candidates = validate_and_fix_urls(candidates) result = rerank(query, candidates) if 'recommended_assessments' in result: result['recommended_assessments'] = validate_and_fix_urls(result['recommended_assessments']) return result except Exception as e: import traceback print(traceback.format_exc()) return {"error": f"Error processing request: {str(e)}"} # === FastAPI Endpoints === @app.get("/health") async def health(): return JSONResponse(content={"status": "healthy"}, status_code=200) @app.post("/recommend") async def recommend_api(request: Request): try: data = await request.json() query = data.get("query", "").strip() if not query: return JSONResponse(content={"error": "Missing query"}, status_code=400) result = recommend(query) return JSONResponse(content=result, status_code=200) except Exception as e: return JSONResponse(content={"error": str(e)}, status_code=500) # === Create Gradio Interface as a Separate App === # For newer Gradio versions (5.x), create a standalone Gradio app with gr.Blocks(title="SHL Assessment Recommender") as demo: gr.Markdown("# SHL Assessment Recommender") gr.Markdown("Paste a job description to get the most relevant SHL assessments.") with gr.Row(): job_description = gr.Textbox( label="Enter Job Description", lines=4, placeholder="Paste a job description here..." ) with gr.Row(): submit_btn = gr.Button("Get Recommendations", variant="primary") with gr.Row(): output = gr.JSON(label="Recommended Assessments") submit_btn.click(fn=recommend, inputs=job_description, outputs=output) # Add path to access Gradio directly at root @app.get("/") async def root(): return RedirectResponse(url="/") # For Hugging Face Spaces deployment with Gradio SDK app = gr.mount_gradio_app(app, demo) # If running standalone (not through Hugging Face), use this instead if __name__ == "__main__": import uvicorn # Uncomment the line below if running locally not on HF # uvicorn.run(app, host="0.0.0.0", port=7860) # Use this for Hugging Face deployment demo.launch()