Spaces:
Sleeping
Sleeping
Update retriever.py
Browse files- retriever.py +5 -16
retriever.py
CHANGED
@@ -7,19 +7,8 @@ def get_relevant_passages(query, df, top_k=20):
|
|
7 |
# Create a copy to avoid modifying the original dataframe
|
8 |
df_copy = df.copy()
|
9 |
|
10 |
-
# Print shape for debugging
|
11 |
-
print(f"DataFrame shape: {df_copy.shape}")
|
12 |
-
print(f"DataFrame columns: {df_copy.columns.tolist()}")
|
13 |
-
|
14 |
-
# Handle missing columns gracefully
|
15 |
-
for col in ['description', 'test_type', 'adaptive_support', 'remote_support', 'duration']:
|
16 |
-
if col not in df_copy.columns:
|
17 |
-
df_copy[col] = 'N/A'
|
18 |
-
|
19 |
# Ensure URL field is properly formatted
|
20 |
-
if 'url'
|
21 |
-
df_copy['url'] = 'https://www.shl.com/missing-url'
|
22 |
-
else:
|
23 |
# Clean up URLs if needed
|
24 |
df_copy['url'] = df_copy['url'].astype(str)
|
25 |
# Ensure URLs start with http or https
|
@@ -29,16 +18,16 @@ def get_relevant_passages(query, df, top_k=20):
|
|
29 |
# Format test_type for better representation
|
30 |
def format_test_type(test_types):
|
31 |
if isinstance(test_types, list):
|
32 |
-
return ', '.join(
|
33 |
return str(test_types)
|
34 |
|
35 |
# Concatenate all fields into a single string per row
|
36 |
corpus = df_copy.apply(
|
37 |
-
lambda row: f"{row
|
38 |
f"Test types: {format_test_type(row['test_type'])}. "
|
39 |
f"Adaptive support: {row['adaptive_support']}. "
|
40 |
f"Remote support: {row['remote_support']}. "
|
41 |
-
f"Duration: {row['duration']} minutes.",
|
42 |
axis=1
|
43 |
).tolist()
|
44 |
|
@@ -46,4 +35,4 @@ def get_relevant_passages(query, df, top_k=20):
|
|
46 |
query_embedding = model.encode(query, convert_to_tensor=True)
|
47 |
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)[0]
|
48 |
|
49 |
-
return df_copy.iloc[[hit['corpus_id'] for hit in hits]]
|
|
|
7 |
# Create a copy to avoid modifying the original dataframe
|
8 |
df_copy = df.copy()
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Ensure URL field is properly formatted
|
11 |
+
if 'url' in df_copy.columns:
|
|
|
|
|
12 |
# Clean up URLs if needed
|
13 |
df_copy['url'] = df_copy['url'].astype(str)
|
14 |
# Ensure URLs start with http or https
|
|
|
18 |
# Format test_type for better representation
|
19 |
def format_test_type(test_types):
|
20 |
if isinstance(test_types, list):
|
21 |
+
return ', '.join(test_types)
|
22 |
return str(test_types)
|
23 |
|
24 |
# Concatenate all fields into a single string per row
|
25 |
corpus = df_copy.apply(
|
26 |
+
lambda row: f"{row['description']} "
|
27 |
f"Test types: {format_test_type(row['test_type'])}. "
|
28 |
f"Adaptive support: {row['adaptive_support']}. "
|
29 |
f"Remote support: {row['remote_support']}. "
|
30 |
+
f"Duration: {row['duration'] if pd.notna(row['duration']) else 'N/A'} minutes.",
|
31 |
axis=1
|
32 |
).tolist()
|
33 |
|
|
|
35 |
query_embedding = model.encode(query, convert_to_tensor=True)
|
36 |
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)[0]
|
37 |
|
38 |
+
return df_copy.iloc[[hit['corpus_id'] for hit in hits]]
|