AnshulS commited on
Commit
6e0aaf8
·
verified ·
1 Parent(s): 3120871

Update retriever.py

Browse files
Files changed (1) hide show
  1. retriever.py +31 -103
retriever.py CHANGED
@@ -1,110 +1,38 @@
1
  import pandas as pd
2
- import gradio as gr
3
- from retriever import get_relevant_passages
4
- from reranker import rerank
5
 
6
- # Load and clean CSV
7
- def clean_df(df):
8
- df = df.copy()
9
-
10
- # Ensure clean URLs
11
- # Check if the second column contains URLs or just IDs
12
- second_col = df.iloc[:, 1].astype(str)
13
- if second_col.str.contains('http').any() or second_col.str.contains('www').any():
14
- df["url"] = second_col # Already has full URLs
15
- else:
16
- # Create full URLs from IDs
17
- df["url"] = "https://www.shl.com/" + second_col.str.replace(r'^[\s/]*', '', regex=True)
18
-
19
- df["remote_support"] = df.iloc[:, 2].map(lambda x: "Yes" if x == "T" else "No")
20
- df["adaptive_support"] = df.iloc[:, 3].map(lambda x: "Yes" if x == "T" else "No")
21
 
22
- # Handle test_type with error checking
23
- df["test_type"] = df.iloc[:, 4].astype(str).str.split("\\n")
 
 
 
 
 
24
 
25
- df["description"] = df.iloc[:, 5]
 
 
 
 
26
 
27
- # Extract duration with error handling
28
- df["duration"] = pd.to_numeric(
29
- df.iloc[:, 8].astype(str).str.extract(r'(\d+)')[0],
30
- errors='coerce'
31
- )
 
 
 
 
32
 
33
- return df[["url", "adaptive_support", "remote_support", "description", "duration", "test_type"]]
34
-
35
- try:
36
- df = pd.read_csv("assesments.csv")
37
- df_clean = clean_df(df)
38
- except Exception as e:
39
- print(f"Error loading or cleaning data: {e}")
40
- # Create an empty DataFrame with required columns as fallback
41
- df_clean = pd.DataFrame(columns=["url", "adaptive_support", "remote_support",
42
- "description", "duration", "test_type"])
43
-
44
- def validate_and_fix_urls(candidates):
45
- """Validates and fixes URLs in candidate assessments."""
46
- for candidate in candidates:
47
- # Ensure URL exists
48
- if 'url' not in candidate or not candidate['url']:
49
- candidate['url'] = 'https://www.shl.com/missing-url'
50
- continue
51
-
52
- url = str(candidate['url'])
53
-
54
- # Fix URLs that are just numbers
55
- if url.isdigit() or (url.startswith('https://www.shl.com') and url[len('https://www.shl.com'):].isdigit()):
56
- candidate['url'] = f"https://www.shl.com/{url.replace('https://www.shl.com', '')}"
57
- continue
58
-
59
- # Add protocol if missing
60
- if not url.startswith(('http://', 'https://')):
61
- candidate['url'] = f"https://{url}"
62
-
63
- return candidates
64
-
65
- def recommend(query):
66
- if not query.strip():
67
- return {"error": "Please enter a job description"}
68
 
69
- try:
70
- # Print some debug info
71
- print(f"Processing query: {query[:50]}...")
72
-
73
- top_k_df = get_relevant_passages(query, df_clean, top_k=20)
74
-
75
- # Debug: Check URLs in retrieved data
76
- print(f"Retrieved {len(top_k_df)} assessments")
77
- if not top_k_df.empty:
78
- print(f"Sample URLs from retrieval: {top_k_df['url'].iloc[:3].tolist()}")
79
-
80
- candidates = top_k_df.to_dict(orient="records")
81
-
82
- # Additional URL validation before sending to reranker
83
- for c in candidates:
84
- if 'url' in c:
85
- if not str(c['url']).startswith(('http://', 'https://')):
86
- c['url'] = f"https://www.shl.com/{str(c['url']).lstrip('/')}"
87
-
88
- result = rerank(query, candidates)
89
-
90
- # Post-process result to ensure URLs are properly formatted
91
- if 'recommended_assessments' in result:
92
- result['recommended_assessments'] = validate_and_fix_urls(result['recommended_assessments'])
93
-
94
- return result
95
- except Exception as e:
96
- import traceback
97
- error_details = traceback.format_exc()
98
- print(f"Error: {str(e)}\n{error_details}")
99
- return {"error": f"Error processing request: {str(e)}"}
100
-
101
- iface = gr.Interface(
102
- fn=recommend,
103
- inputs=gr.Textbox(label="Enter Job Description", lines=4),
104
- outputs="json",
105
- title="SHL Assessment Recommender",
106
- description="Paste a job description to get the most relevant SHL assessments."
107
- )
108
-
109
- if __name__ == "__main__":
110
- iface.launch()
 
1
  import pandas as pd
2
+ from sentence_transformers import SentenceTransformer, util
 
 
3
 
4
+ model = SentenceTransformer("all-MiniLM-L6-v2")
5
+
6
+ def get_relevant_passages(query, df, top_k=20):
7
+ # Create a copy to avoid modifying the original dataframe
8
+ df_copy = df.copy()
 
 
 
 
 
 
 
 
 
 
9
 
10
+ # Ensure URL field is properly formatted
11
+ if 'url' in df_copy.columns:
12
+ # Clean up URLs if needed
13
+ df_copy['url'] = df_copy['url'].astype(str)
14
+ # Ensure URLs start with http or https
15
+ mask = ~df_copy['url'].str.startswith(('http://', 'https://'))
16
+ df_copy.loc[mask, 'url'] = 'https://www.shl.com/' + df_copy.loc[mask, 'url'].str.lstrip('/')
17
 
18
+ # Format test_type for better representation
19
+ def format_test_type(test_types):
20
+ if isinstance(test_types, list):
21
+ return ', '.join(test_types)
22
+ return str(test_types)
23
 
24
+ # Concatenate all fields into a single string per row
25
+ corpus = df_copy.apply(
26
+ lambda row: f"{row['description']} "
27
+ f"Test types: {format_test_type(row['test_type'])}. "
28
+ f"Adaptive support: {row['adaptive_support']}. "
29
+ f"Remote support: {row['remote_support']}. "
30
+ f"Duration: {row['duration'] if pd.notna(row['duration']) else 'N/A'} minutes.",
31
+ axis=1
32
+ ).tolist()
33
 
34
+ corpus_embeddings = model.encode(corpus, convert_to_tensor=True)
35
+ query_embedding = model.encode(query, convert_to_tensor=True)
36
+ hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ return df_copy.iloc[[hit['corpus_id'] for hit in hits]]