Spaces:
Sleeping
Sleeping
Update retriever.py
Browse files- retriever.py +31 -103
retriever.py
CHANGED
@@ -1,110 +1,38 @@
|
|
1 |
import pandas as pd
|
2 |
-
import
|
3 |
-
from retriever import get_relevant_passages
|
4 |
-
from reranker import rerank
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
# Check if the second column contains URLs or just IDs
|
12 |
-
second_col = df.iloc[:, 1].astype(str)
|
13 |
-
if second_col.str.contains('http').any() or second_col.str.contains('www').any():
|
14 |
-
df["url"] = second_col # Already has full URLs
|
15 |
-
else:
|
16 |
-
# Create full URLs from IDs
|
17 |
-
df["url"] = "https://www.shl.com/" + second_col.str.replace(r'^[\s/]*', '', regex=True)
|
18 |
-
|
19 |
-
df["remote_support"] = df.iloc[:, 2].map(lambda x: "Yes" if x == "T" else "No")
|
20 |
-
df["adaptive_support"] = df.iloc[:, 3].map(lambda x: "Yes" if x == "T" else "No")
|
21 |
|
22 |
-
#
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
df = pd.read_csv("assesments.csv")
|
37 |
-
df_clean = clean_df(df)
|
38 |
-
except Exception as e:
|
39 |
-
print(f"Error loading or cleaning data: {e}")
|
40 |
-
# Create an empty DataFrame with required columns as fallback
|
41 |
-
df_clean = pd.DataFrame(columns=["url", "adaptive_support", "remote_support",
|
42 |
-
"description", "duration", "test_type"])
|
43 |
-
|
44 |
-
def validate_and_fix_urls(candidates):
|
45 |
-
"""Validates and fixes URLs in candidate assessments."""
|
46 |
-
for candidate in candidates:
|
47 |
-
# Ensure URL exists
|
48 |
-
if 'url' not in candidate or not candidate['url']:
|
49 |
-
candidate['url'] = 'https://www.shl.com/missing-url'
|
50 |
-
continue
|
51 |
-
|
52 |
-
url = str(candidate['url'])
|
53 |
-
|
54 |
-
# Fix URLs that are just numbers
|
55 |
-
if url.isdigit() or (url.startswith('https://www.shl.com') and url[len('https://www.shl.com'):].isdigit()):
|
56 |
-
candidate['url'] = f"https://www.shl.com/{url.replace('https://www.shl.com', '')}"
|
57 |
-
continue
|
58 |
-
|
59 |
-
# Add protocol if missing
|
60 |
-
if not url.startswith(('http://', 'https://')):
|
61 |
-
candidate['url'] = f"https://{url}"
|
62 |
-
|
63 |
-
return candidates
|
64 |
-
|
65 |
-
def recommend(query):
|
66 |
-
if not query.strip():
|
67 |
-
return {"error": "Please enter a job description"}
|
68 |
|
69 |
-
|
70 |
-
# Print some debug info
|
71 |
-
print(f"Processing query: {query[:50]}...")
|
72 |
-
|
73 |
-
top_k_df = get_relevant_passages(query, df_clean, top_k=20)
|
74 |
-
|
75 |
-
# Debug: Check URLs in retrieved data
|
76 |
-
print(f"Retrieved {len(top_k_df)} assessments")
|
77 |
-
if not top_k_df.empty:
|
78 |
-
print(f"Sample URLs from retrieval: {top_k_df['url'].iloc[:3].tolist()}")
|
79 |
-
|
80 |
-
candidates = top_k_df.to_dict(orient="records")
|
81 |
-
|
82 |
-
# Additional URL validation before sending to reranker
|
83 |
-
for c in candidates:
|
84 |
-
if 'url' in c:
|
85 |
-
if not str(c['url']).startswith(('http://', 'https://')):
|
86 |
-
c['url'] = f"https://www.shl.com/{str(c['url']).lstrip('/')}"
|
87 |
-
|
88 |
-
result = rerank(query, candidates)
|
89 |
-
|
90 |
-
# Post-process result to ensure URLs are properly formatted
|
91 |
-
if 'recommended_assessments' in result:
|
92 |
-
result['recommended_assessments'] = validate_and_fix_urls(result['recommended_assessments'])
|
93 |
-
|
94 |
-
return result
|
95 |
-
except Exception as e:
|
96 |
-
import traceback
|
97 |
-
error_details = traceback.format_exc()
|
98 |
-
print(f"Error: {str(e)}\n{error_details}")
|
99 |
-
return {"error": f"Error processing request: {str(e)}"}
|
100 |
-
|
101 |
-
iface = gr.Interface(
|
102 |
-
fn=recommend,
|
103 |
-
inputs=gr.Textbox(label="Enter Job Description", lines=4),
|
104 |
-
outputs="json",
|
105 |
-
title="SHL Assessment Recommender",
|
106 |
-
description="Paste a job description to get the most relevant SHL assessments."
|
107 |
-
)
|
108 |
-
|
109 |
-
if __name__ == "__main__":
|
110 |
-
iface.launch()
|
|
|
1 |
import pandas as pd
|
2 |
+
from sentence_transformers import SentenceTransformer, util
|
|
|
|
|
3 |
|
4 |
+
model = SentenceTransformer("all-MiniLM-L6-v2")
|
5 |
+
|
6 |
+
def get_relevant_passages(query, df, top_k=20):
|
7 |
+
# Create a copy to avoid modifying the original dataframe
|
8 |
+
df_copy = df.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Ensure URL field is properly formatted
|
11 |
+
if 'url' in df_copy.columns:
|
12 |
+
# Clean up URLs if needed
|
13 |
+
df_copy['url'] = df_copy['url'].astype(str)
|
14 |
+
# Ensure URLs start with http or https
|
15 |
+
mask = ~df_copy['url'].str.startswith(('http://', 'https://'))
|
16 |
+
df_copy.loc[mask, 'url'] = 'https://www.shl.com/' + df_copy.loc[mask, 'url'].str.lstrip('/')
|
17 |
|
18 |
+
# Format test_type for better representation
|
19 |
+
def format_test_type(test_types):
|
20 |
+
if isinstance(test_types, list):
|
21 |
+
return ', '.join(test_types)
|
22 |
+
return str(test_types)
|
23 |
|
24 |
+
# Concatenate all fields into a single string per row
|
25 |
+
corpus = df_copy.apply(
|
26 |
+
lambda row: f"{row['description']} "
|
27 |
+
f"Test types: {format_test_type(row['test_type'])}. "
|
28 |
+
f"Adaptive support: {row['adaptive_support']}. "
|
29 |
+
f"Remote support: {row['remote_support']}. "
|
30 |
+
f"Duration: {row['duration'] if pd.notna(row['duration']) else 'N/A'} minutes.",
|
31 |
+
axis=1
|
32 |
+
).tolist()
|
33 |
|
34 |
+
corpus_embeddings = model.encode(corpus, convert_to_tensor=True)
|
35 |
+
query_embedding = model.encode(query, convert_to_tensor=True)
|
36 |
+
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
return df_copy.iloc[[hit['corpus_id'] for hit in hits]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|