Spaces:
Sleeping
Sleeping
import pandas as pd | |
import gradio as gr | |
from fastapi import FastAPI, Request | |
from fastapi.responses import JSONResponse | |
from fastapi.middleware.cors import CORSMiddleware | |
import traceback | |
from retriever import get_relevant_passages | |
from reranker import rerank | |
# Create FastAPI app | |
app = FastAPI(root_path="") | |
# Add CORS middleware | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# === Load and Clean CSV === | |
def clean_df(df): | |
df = df.copy() | |
second_col = df.iloc[:, 2].astype(str) | |
if second_col.str.contains('http').any() or second_col.str.contains('www').any(): | |
df["url"] = second_col | |
else: | |
df["url"] = "https://www.shl.com" + second_col.str.replace(r'^(?!/)', '/', regex=True) | |
df["remote_support"] = df.iloc[:, 3].map(lambda x: "Yes" if x == "T" else "No") | |
df["adaptive_support"] = df.iloc[:, 4].map(lambda x: "Yes" if x == "T" else "No") | |
df["test_type"] = df.iloc[:, 5].apply(lambda x: eval(x) if isinstance(x, str) else x) | |
df["description"] = df.iloc[:, 6] | |
df["duration"] = pd.to_numeric(df.iloc[:, 9].astype(str).str.extract(r'(\d+)')[0], errors='coerce') | |
return df[["url", "adaptive_support", "remote_support", "description", "duration", "test_type"]] | |
try: | |
df = pd.read_csv("assesments.csv", encoding='utf-8') | |
df_clean = clean_df(df) | |
print(f"Successfully loaded {len(df_clean)} assessments") | |
except Exception as e: | |
print(f"Error loading data: {e}") | |
df_clean = pd.DataFrame(columns=["url", "adaptive_support", "remote_support", "description", "duration", "test_type"]) | |
# === Utility === | |
def validate_and_fix_urls(candidates): | |
for candidate in candidates: | |
if not isinstance(candidate, dict): | |
continue | |
if 'url' not in candidate or not candidate['url']: | |
candidate['url'] = 'https://www.shl.com/missing-url' | |
continue | |
url = str(candidate['url']) | |
if url.isdigit(): | |
candidate['url'] = f"https://www.shl.com/{url}" | |
continue | |
if not url.startswith(('http://', 'https://')): | |
candidate['url'] = f"https://www.shl.com{url}" if url.startswith('/') else f"https://www.shl.com/{url}" | |
return candidates | |
# === Recommendation Logic === | |
def recommend(query): | |
if not query or not query.strip(): | |
return {"error": "Please enter a job description"} | |
try: | |
top_k_df = get_relevant_passages(query, df_clean, top_k=20) | |
if top_k_df.empty: | |
return {"error": "No matching assessments found"} | |
top_k_df['test_type'] = top_k_df['test_type'].apply( | |
lambda x: x if isinstance(x, list) else | |
(eval(x) if isinstance(x, str) and x.startswith('[') else [str(x)]) | |
) | |
top_k_df['duration'] = top_k_df['duration'].fillna(-1).astype(int) | |
top_k_df.loc[top_k_df['duration'] == -1, 'duration'] = None | |
candidates = top_k_df.to_dict(orient="records") | |
candidates = validate_and_fix_urls(candidates) | |
result = rerank(query, candidates) | |
if 'recommended_assessments' in result: | |
result['recommended_assessments'] = validate_and_fix_urls(result['recommended_assessments']) | |
return result | |
except Exception as e: | |
print(traceback.format_exc()) | |
return {"error": f"Error processing request: {str(e)}"} | |
# === FastAPI Endpoints === | |
async def health(): | |
return JSONResponse(content={"status": "healthy"}, status_code=200) | |
async def recommend_api(request: Request): | |
try: | |
data = await request.json() | |
query = data.get("query", "").strip() | |
if not query: | |
return JSONResponse(content={"error": "Missing query"}, status_code=400) | |
result = recommend(query) | |
return JSONResponse(content=result, status_code=200) | |
except Exception as e: | |
return JSONResponse(content={"error": str(e)}, status_code=500) | |
# Create a Gradio interface | |
demo = gr.Interface( | |
fn=recommend, | |
inputs=gr.Textbox( | |
label="Enter Job Description", | |
lines=4, | |
placeholder="Paste a job description here..." | |
), | |
outputs=gr.JSON(label="Recommended Assessments"), | |
title="SHL Assessment Recommender", | |
description="Paste a job description to get the most relevant SHL assessments.", | |
analytics_enabled=False, | |
) | |
# This is the pattern for Gradio 5.x | |
#app = gr.mount_gradio_app(app, demo, path="/") | |
app = gr.mount_gradio_app( | |
app, | |
demo, | |
path="/", | |
app_kwargs={ | |
"ssl_verify": False, # Disable SSL verification for HF Spaces | |
"show_error": True, # Show detailed errors | |
} | |
) | |
# Entry point | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run( | |
app, | |
host="0.0.0.0", | |
port=7860, | |
log_level="info", | |
proxy_headers=True, # Process forwarded headers | |
forwarded_allow_ips="*" # Trust forwarded headers from any IP | |
) | |
#uvicorn.run(app, host="0.0.0.0", port=7860) | |
#app |