AnshulS's picture
Update app.py
bef0a51 verified
raw
history blame
2.27 kB
import pandas as pd
import gradio as gr
from retriever import get_relevant_passages
from reranker import rerank
# Load and clean CSV
def clean_df(df):
df = df.copy()
# Ensure clean URLs
# Check if the second column contains URLs or just IDs
second_col = df.iloc[:, 1].astype(str)
if second_col.str.contains('http').any() or second_col.str.contains('www').any():
df["url"] = second_col # Already has full URLs
else:
# Create full URLs from IDs
df["url"] = "https://www.shl.com/" + second_col.str.replace(r'^[\s/]*', '', regex=True)
df["remote_support"] = df.iloc[:, 2].map(lambda x: "Yes" if x == "T" else "No")
df["adaptive_support"] = df.iloc[:, 3].map(lambda x: "Yes" if x == "T" else "No")
# Handle test_type with error checking
df["test_type"] = df.iloc[:, 4].astype(str).str.split("\\n")
df["description"] = df.iloc[:, 5]
# Extract duration with error handling
df["duration"] = pd.to_numeric(
df.iloc[:, 8].astype(str).str.extract(r'(\d+)')[0],
errors='coerce'
)
return df[["url", "adaptive_support", "remote_support", "description", "duration", "test_type"]]
try:
df = pd.read_csv("assesments.csv")
df_clean = clean_df(df)
except Exception as e:
print(f"Error loading or cleaning data: {e}")
# Create an empty DataFrame with required columns as fallback
df_clean = pd.DataFrame(columns=["url", "adaptive_support", "remote_support",
"description", "duration", "test_type"])
def recommend(query):
if not query.strip():
return {"error": "Please enter a job description"}
try:
top_k_df = get_relevant_passages(query, df_clean, top_k=20)
candidates = top_k_df.to_dict(orient="records")
result = rerank(query, candidates)
return result
except Exception as e:
return {"error": f"Error processing request: {str(e)}"}
iface = gr.Interface(
fn=recommend,
inputs=gr.Textbox(label="Enter Job Description", lines=4),
outputs="json",
title="SHL Assessment Recommender",
description="Paste a job description to get the most relevant SHL assessments."
)
if __name__ == "__main__":
iface.launch()