AnshulS's picture
Update app.py
8a90849 verified
raw
history blame
4.97 kB
import pandas as pd
import gradio as gr
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse, RedirectResponse
from fastapi.middleware.cors import CORSMiddleware
from retriever import get_relevant_passages
from reranker import rerank
# === Create FastAPI App ===
app = FastAPI(title="SHL Assessment Recommender API")
# Add CORS middleware to allow cross-origin requests
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# === Load and Clean CSV ===
def clean_df(df):
df = df.copy()
second_col = df.iloc[:, 2].astype(str)
if second_col.str.contains('http').any() or second_col.str.contains('www').any():
df["url"] = second_col
else:
df["url"] = "https://www.shl.com" + second_col.str.replace(r'^(?!/)', '/', regex=True)
df["remote_support"] = df.iloc[:, 3].map(lambda x: "Yes" if x == "T" else "No")
df["adaptive_support"] = df.iloc[:, 4].map(lambda x: "Yes" if x == "T" else "No")
df["test_type"] = df.iloc[:, 5].apply(lambda x: eval(x) if isinstance(x, str) else x)
df["description"] = df.iloc[:, 6]
df["duration"] = pd.to_numeric(df.iloc[:, 9].astype(str).str.extract(r'(\d+)')[0], errors='coerce')
return df[["url", "adaptive_support", "remote_support", "description", "duration", "test_type"]]
try:
df = pd.read_csv("assesments.csv", encoding='utf-8')
df_clean = clean_df(df)
print(f"Successfully loaded {len(df_clean)} assessments")
except Exception as e:
print(f"Error loading data: {e}")
df_clean = pd.DataFrame(columns=["url", "adaptive_support", "remote_support", "description", "duration", "test_type"])
# === Utility ===
def validate_and_fix_urls(candidates):
for candidate in candidates:
if not isinstance(candidate, dict):
continue
if 'url' not in candidate or not candidate['url']:
candidate['url'] = 'https://www.shl.com/missing-url'
continue
url = str(candidate['url'])
if url.isdigit():
candidate['url'] = f"https://www.shl.com/{url}"
continue
if not url.startswith(('http://', 'https://')):
candidate['url'] = f"https://www.shl.com{url}" if url.startswith('/') else f"https://www.shl.com/{url}"
return candidates
# === Recommendation Logic ===
def recommend(query):
if not query or not query.strip():
return {"error": "Please enter a job description"}
try:
top_k_df = get_relevant_passages(query, df_clean, top_k=20)
if top_k_df.empty:
return {"error": "No matching assessments found"}
top_k_df['test_type'] = top_k_df['test_type'].apply(
lambda x: x if isinstance(x, list) else
(eval(x) if isinstance(x, str) and x.startswith('[') else [str(x)])
)
top_k_df['duration'] = top_k_df['duration'].fillna(-1).astype(int)
top_k_df.loc[top_k_df['duration'] == -1, 'duration'] = None
candidates = top_k_df.to_dict(orient="records")
candidates = validate_and_fix_urls(candidates)
result = rerank(query, candidates)
if 'recommended_assessments' in result:
result['recommended_assessments'] = validate_and_fix_urls(result['recommended_assessments'])
return result
except Exception as e:
import traceback
print(traceback.format_exc())
return {"error": f"Error processing request: {str(e)}"}
# === FastAPI Endpoints ===
@app.get("/health")
async def health():
return JSONResponse(content={"status": "healthy"}, status_code=200)
@app.post("/recommend")
async def recommend_api(request: Request):
try:
data = await request.json()
query = data.get("query", "").strip()
if not query:
return JSONResponse(content={"error": "Missing query"}, status_code=400)
result = recommend(query)
return JSONResponse(content=result, status_code=200)
except Exception as e:
return JSONResponse(content={"error": str(e)}, status_code=500)
@app.get("/")
async def root():
return RedirectResponse(url="/gradio")
# === Create Gradio Interface ===
def create_gr_interface():
return gr.Interface(
fn=recommend,
inputs=gr.Textbox(label="Enter Job Description", lines=4, placeholder="Paste a job description here..."),
outputs=gr.JSON(),
title="SHL Assessment Recommender",
description="Paste a job description to get the most relevant SHL assessments.",
theme=gr.themes.Soft(),
allow_flagging="never"
)
# === Mount Gradio App ===
# This is the new recommended way to integrate Gradio with FastAPI
gr_app = create_gr_interface()
app = gr.mount_gradio_app(app, gr_app, path="/gradio")
# Entry point for running the application directly
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)