Spaces:
Sleeping
Sleeping
import pandas as pd | |
from sentence_transformers import SentenceTransformer, util | |
model = SentenceTransformer("all-MiniLM-L6-v2") | |
def get_relevant_passages(query, df, top_k=20): | |
corpus = df["description"].astype(str).tolist() | |
corpus_embeddings = model.encode(corpus, convert_to_tensor=True) | |
query_embedding = model.encode(query, convert_to_tensor=True) | |
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)[0] | |
return df.iloc[[hit['corpus_id'] for hit in hits]] | |