import streamlit as st
import os
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
from langchain_core.messages import HumanMessage, SystemMessage
# Set environment variables for Hugging Face token
hf = os.getenv('HF_TOKEN')
os.environ['HUGGINGFACEHUB_API_TOKEN'] = hf
os.environ['HF_TOKEN'] = hf
# Page config
st.set_page_config(page_title="Deep Learning Mentor Chat", layout="centered")
st.markdown("""
""", unsafe_allow_html=True)
st.markdown("
🤖 Deep Learning Mentor Chat
", unsafe_allow_html=True)
st.markdown("Learn Deep Learning with personalized AI mentorship
", unsafe_allow_html=True)
# Sidebar for experience level
st.sidebar.title("🎓 Select Your Level")
exp = st.sidebar.selectbox("Experience Level", ["Beginner", "Intermediate", "Expert"])
# Load Deep Learning model
mentor_llm = HuggingFaceEndpoint(
repo_id='Qwen/Qwen3-32B',
provider='sambanova',
temperature=0.7,
max_new_tokens=150,
task='conversational'
)
deep_mentor = ChatHuggingFace(llm=mentor_llm)
# Session key for conversation
PAGE_KEY = "deep_learning_chat_history"
if PAGE_KEY not in st.session_state:
st.session_state[PAGE_KEY] = []
# Chat input form
st.markdown("
", unsafe_allow_html=True)
with st.form(key="chat_form"):
user_input = st.text_input("💬 Ask your deep learning question:")
submit = st.form_submit_button("Send")
# Handle chat submission
if submit and user_input:
system_prompt = f"""You are a knowledgeable Deep Learning mentor with {exp} years of practical experience. Your communication style is friendly, supportive, and focused. Please adhere to the following strict instructions:
1. Only respond to queries that are specifically about deep learning programming — this includes related libraries, tools, and frameworks.
2. If a question is outside the scope of deep learning, respond exactly with: "I specialize only in deep learning programming. This appears to be a non-deep learning topic."
3. Do not offer help or advice on non-deep learning subjects.
4. Aim for clarity and practical relevance in your explanations, keeping them beginner-friendly when needed.
5. Reinforce learning through relevant code snippets and applied examples.
6. For more advanced discussions, assume the learner has a working knowledge of deep learning fundamentals."""
messages = [SystemMessage(content=system_prompt), HumanMessage(content=user_input)]
result = deep_mentor.invoke(messages)
st.session_state[PAGE_KEY].append((user_input, result.content))
# Chat history display with bubble styling
if st.session_state[PAGE_KEY]:
st.markdown('', unsafe_allow_html=True)
for user, bot in st.session_state[PAGE_KEY]:
st.markdown(f'
👤 You: {user}
', unsafe_allow_html=True)
st.markdown(f'
🧑🏫 Mentor: {bot}
', unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)