Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,204 +1,61 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import
|
3 |
-
from
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
def
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
st.title("🤖 Innomatics ChatGenius Hub")
|
20 |
-
st.markdown("Choose a domain to chat with an expert model:")
|
21 |
-
|
22 |
-
col1, col2, col3 = st.columns(3)
|
23 |
-
with col1:
|
24 |
-
if st.button("Python 🐍"):
|
25 |
-
switch_page("python")
|
26 |
-
if st.button("Statistics 📈"):
|
27 |
-
switch_page("statistics")
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
with col2:
|
32 |
-
if st.button("SQL 🛢️"):
|
33 |
-
switch_page("sql")
|
34 |
-
if st.button("Machine Learning 🤖"):
|
35 |
-
switch_page("ml")
|
36 |
-
|
37 |
-
|
38 |
-
with col3:
|
39 |
-
if st.button("Power BI 📊"):
|
40 |
-
switch_page("powerbi")
|
41 |
-
if st.button("Deep Learning 🧠"):
|
42 |
-
switch_page("deeplearning")
|
43 |
-
with col2:
|
44 |
-
if st.button("GenAI🔮🤖"):
|
45 |
-
switch_page("genai")
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
# Example domain-specific chatbot page
|
50 |
-
elif st.session_state.page == "python":
|
51 |
-
st.title("Python Chatbot 🐍")
|
52 |
-
# hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") or os.getenv("HF_TOKEN")
|
53 |
-
# if not hf_token:
|
54 |
-
# st.error("Please add your Hugging Face API token to Secrets (HUGGINGFACEHUB_API_TOKEN or HF_TOKEN).")
|
55 |
-
# st.stop()
|
56 |
-
|
57 |
-
# # Setup the LangChain HuggingFaceEndpoint and ChatHuggingFace LLM
|
58 |
-
# deep_seek_model = HuggingFaceEndpoint(
|
59 |
-
# repo_id="deepseek-ai/DeepSeek-R1",
|
60 |
-
# # provider = 'nebius'
|
61 |
-
# temperature=0.7,
|
62 |
-
# max_new_tokens=100,
|
63 |
-
# task="conversational",
|
64 |
-
# huggingfacehub_api_token=hf_token,
|
65 |
-
# )
|
66 |
-
|
67 |
-
# deepseek = ChatHuggingFace(
|
68 |
-
# llm=deep_seek_model,
|
69 |
-
# repo_id="deepseek-ai/DeepSeek-R1",
|
70 |
-
# # provider="nebius",
|
71 |
-
# temperature=0.7,
|
72 |
-
# max_new_tokens=100,
|
73 |
-
# task="conversational"
|
74 |
-
# )
|
75 |
-
|
76 |
-
|
77 |
-
gemma_model = HuggingFaceEndpoint(
|
78 |
-
repo_id="google/gemma-3-27b-it",
|
79 |
-
temperature=0.7,
|
80 |
-
max_new_tokens=512,
|
81 |
-
task="conversational",
|
82 |
-
huggingfacehub_api_token=hf_token,
|
83 |
)
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
)
|
92 |
-
|
93 |
-
|
94 |
-
st.session_state.messages = [
|
95 |
-
SystemMessage(content="Answer like a 10 year experinced Python developer")
|
96 |
-
]
|
97 |
-
|
98 |
-
def generate_response(user_input):
|
99 |
-
# Append user message
|
100 |
-
st.session_state.messages.append(HumanMessage(content=user_input))
|
101 |
-
# Invoke the model
|
102 |
-
response = chat_gemma.invoke(st.session_state.messages)
|
103 |
-
# Append AI response
|
104 |
-
st.session_state.messages.append(AIMessage(content=response))
|
105 |
-
return response
|
106 |
-
|
107 |
-
# User input
|
108 |
-
user_input = st.text_input("Ask a question about Python:")
|
109 |
-
|
110 |
-
if user_input:
|
111 |
-
with st.spinner("Getting answer..."):
|
112 |
-
answer = generate_response(user_input)
|
113 |
-
st.markdown(f"**Answer:** {answer}")
|
114 |
-
|
115 |
-
# Display chat history
|
116 |
-
if st.session_state.messages:
|
117 |
-
for msg in st.session_state.messages[1:]: # skip initial SystemMessage
|
118 |
-
if isinstance(msg, HumanMessage):
|
119 |
-
st.markdown(f"**You:** {msg.content}")
|
120 |
-
elif isinstance(msg, AIMessage):
|
121 |
-
st.markdown(f"**Bot:** {msg.content}")
|
122 |
-
st.button("⬅️ Back to Home", on_click=lambda: switch_page("home"))
|
123 |
-
# Here you can load your Python LLM and chat interface
|
124 |
-
|
125 |
-
elif st.session_state.page == "sql":
|
126 |
-
st.title("SQL Chatbot 🛢️")
|
127 |
-
if not hf_token:
|
128 |
-
st.error("Please add your Hugging Face API token as an environment variable.")
|
129 |
-
st.stop()
|
130 |
-
|
131 |
-
# Initialize the LLaMA model from HuggingFace (via Nebius provider)
|
132 |
-
llama_model = HuggingFaceEndpoint(
|
133 |
-
repo_id="meta-llama/Llama-3.1-8B-Instruct",
|
134 |
-
temperature=0.7,
|
135 |
-
max_new_tokens=512,
|
136 |
-
task="conversational",
|
137 |
-
huggingfacehub_api_token=hf_token,
|
138 |
-
)
|
139 |
-
|
140 |
-
llama = ChatHuggingFace(
|
141 |
-
llm=llama_model,
|
142 |
-
repo_id="meta-llama/Llama-3.1-8B-Instruct",
|
143 |
-
# provider="nebius",
|
144 |
-
temperature=0.7,
|
145 |
-
max_new_tokens=512,
|
146 |
-
task="conversational"
|
147 |
-
)
|
148 |
-
|
149 |
-
# Streamlit A
|
150 |
-
|
151 |
-
st.markdown("Ask anything related to SQL interviews!")
|
152 |
-
|
153 |
-
# Initialize chat history
|
154 |
-
if "messages" not in st.session_state:
|
155 |
-
st.session_state.messages = [SystemMessage(content="Answer clearly like a technical 10 year experienced person in SQL .")]
|
156 |
-
|
157 |
-
# User input
|
158 |
-
user_input = st.text_input("💡 Ask your SQL interview question:", placeholder="e.g., give me 10 SQL interview questions with answers")
|
159 |
-
|
160 |
-
def generate_response(user_input):
|
161 |
-
st.session_state.messages.append(HumanMessage(content=user_input))
|
162 |
-
response = llama.invoke(st.session_state.messages)
|
163 |
-
st.session_state.messages.append(AIMessage(content=response))
|
164 |
-
return response
|
165 |
-
|
166 |
-
# Display response
|
167 |
-
if user_input:
|
168 |
-
with st.spinner("Thinking..."):
|
169 |
-
answer = generate_response(user_input)
|
170 |
-
st.markdown(f"**Answer:** {answer}")
|
171 |
-
|
172 |
-
# Show chat history
|
173 |
-
st.markdown("### 📜 Chat History")
|
174 |
-
for msg in st.session_state.messages[1:]: # Skip SystemMessage
|
175 |
-
if isinstance(msg, HumanMessage):
|
176 |
-
st.markdown(f"**You:** {msg.content}")
|
177 |
-
elif isinstance(msg, AIMessage):
|
178 |
-
st.markdown(f"**Bot:** {msg.content}")
|
179 |
-
st.button("⬅️ Back to Home", on_click=lambda: switch_page("home"))
|
180 |
-
# Load SQL chatbot here
|
181 |
-
|
182 |
-
elif st.session_state.page == "powerbi":
|
183 |
-
st.title("Power BI Chatbot 📊")
|
184 |
-
st.button("⬅️ Back to Home", on_click=lambda: switch_page("home"))
|
185 |
-
|
186 |
-
elif st.session_state.page == "ml":
|
187 |
-
st.title("Machine Learning Chatbot 🤖")
|
188 |
-
st.button("⬅️ Back to Home", on_click=lambda: switch_page("home"))
|
189 |
-
|
190 |
-
elif st.session_state.page == "deeplearning":
|
191 |
-
st.title("Deep Learning Chatbot 🧠")
|
192 |
-
st.button("⬅️ Back to Home", on_click=lambda: switch_page("home"))
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
st.button("⬅️ Back to Home", on_click=lambda: switch_page("home"))
|
201 |
|
|
|
|
|
|
|
202 |
|
|
|
|
|
203 |
|
|
|
|
|
204 |
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain_community.document_loaders import YoutubeLoader
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import torch
|
5 |
+
|
6 |
+
st.set_page_config(page_title="DeepSeek YouTube Summarizer", layout="centered")
|
7 |
+
st.title("📺 YouTube Video Summarizer with DeepSeek")
|
8 |
+
|
9 |
+
# Input YouTube URL
|
10 |
+
url = st.text_input("Enter YouTube Video URL:")
|
11 |
+
|
12 |
+
# Load DeepSeek model and tokenizer
|
13 |
+
@st.cache_resource
|
14 |
+
def load_model():
|
15 |
+
model_id = "deepseek-ai/deepseek-llm-7b-instruct"
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
18 |
+
model_id, device_map="auto", torch_dtype=torch.float16, trust_remote_code=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
)
|
20 |
+
return tokenizer, model
|
21 |
+
|
22 |
+
tokenizer, model = load_model()
|
23 |
+
|
24 |
+
def summarize_with_deepseek(text):
|
25 |
+
prompt = f"""<|system|>\nYou are a helpful assistant.\n<|user|>\nSummarize the following text:\n{text}\n<|assistant|>"""
|
26 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
27 |
+
outputs = model.generate(
|
28 |
+
**inputs,
|
29 |
+
max_new_tokens=300,
|
30 |
+
do_sample=False,
|
31 |
+
temperature=0.7,
|
32 |
+
top_k=50,
|
33 |
+
top_p=0.95,
|
34 |
)
|
35 |
+
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
36 |
+
return summary.split("<|assistant|>")[-1].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
if st.button("Extract and Summarize"):
|
39 |
+
if url:
|
40 |
+
try:
|
41 |
+
loader = YoutubeLoader.from_youtube_url(url)
|
42 |
+
data = loader.load()
|
43 |
+
transcript = data[0].page_content if data else "No transcript found."
|
44 |
|
45 |
+
st.subheader("📖 Extracted Transcript")
|
46 |
+
st.text_area("Transcript:", transcript, height=300)
|
|
|
47 |
|
48 |
+
# Truncate for prompt length safety
|
49 |
+
if len(transcript) > 1500:
|
50 |
+
transcript = transcript[:1500]
|
51 |
|
52 |
+
with st.spinner("Summarizing using DeepSeek..."):
|
53 |
+
summary = summarize_with_deepseek(transcript)
|
54 |
|
55 |
+
st.subheader("🧠 Summary")
|
56 |
+
st.success(summary)
|
57 |
|
58 |
+
except Exception as e:
|
59 |
+
st.error(f"Error: {str(e)}")
|
60 |
+
else:
|
61 |
+
st.warning("Please enter a valid YouTube URL.")
|