Spaces:
Sleeping
Sleeping
File size: 6,592 Bytes
973212e b8e9809 21703b6 b8e9809 21703b6 9f28f76 b8e9809 21703b6 b8e9809 9f28f76 21703b6 b8e9809 6b7c40c b02d824 49ec43a 4fdb053 6dfa2f3 4fdb053 c18184f 4fdb053 59b9d1f 4fdb053 b02d824 4fdb053 59b9d1f d845172 59b9d1f 49ec43a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import streamlit as st
import os
from langchain_huggingface import HuggingFaceEndpoint, HuggingFacePipeline, ChatHuggingFace
from langchain_core.messages import HumanMessage,SystemMessage,AIMessage
hf_token = os.getenv("HF_TOKEN")
# Set the default page in session state
if "page" not in st.session_state:
st.session_state.page = "home"
# Function to switch pages
def switch_page(page_name):
st.session_state.page = page_name
# Home page with buttons for different domains
if st.session_state.page == "home":
st.title("๐ค Innomatics ChatGenius Hub")
st.markdown("Choose a domain to chat with an expert model:")
col1, col2, col3 = st.columns(3)
with col1:
if st.button("Python ๐"):
switch_page("python")
if st.button("Statistics ๐"):
switch_page("statistics")
with col2:
if st.button("SQL ๐ข๏ธ"):
switch_page("sql")
if st.button("Machine Learning ๐ค"):
switch_page("ml")
with col3:
if st.button("Power BI ๐"):
switch_page("powerbi")
if st.button("Deep Learning ๐ง "):
switch_page("deeplearning")
with col2:
if st.button("GenAI๐ฎ๐ค"):
switch_page("genai")
# Example domain-specific chatbot page
elif st.session_state.page == "python":
st.title("Python Chatbot ๐")
# hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") or os.getenv("HF_TOKEN")
# if not hf_token:
# st.error("Please add your Hugging Face API token to Secrets (HUGGINGFACEHUB_API_TOKEN or HF_TOKEN).")
# st.stop()
# # Setup the LangChain HuggingFaceEndpoint and ChatHuggingFace LLM
# deep_seek_model = HuggingFaceEndpoint(
# repo_id="deepseek-ai/DeepSeek-R1",
# # provider = 'nebius'
# temperature=0.7,
# max_new_tokens=100,
# task="conversational",
# huggingfacehub_api_token=hf_token,
# )
# deepseek = ChatHuggingFace(
# llm=deep_seek_model,
# repo_id="deepseek-ai/DeepSeek-R1",
# # provider="nebius",
# temperature=0.7,
# max_new_tokens=100,
# task="conversational"
# )
gemma_model = HuggingFaceEndpoint(
repo_id="google/gemma-3-27b-it",
temperature=0.7,
max_new_tokens=512,
task="conversational",
huggingfacehub_api_token=hf_token,
)
chat_gemma = ChatHuggingFace(
llm=gemma_model,
repo_id="google/gemma-3-27b-it",
temperature=0.7,
max_new_tokens=512,
task="conversational",
)
# Initialize session state for chat history
if "messages" not in st.session_state:
st.session_state.messages = [
SystemMessage(content="Answer like a 10 year experinced Python developer")
]
def generate_response(user_input):
# Append user message
st.session_state.messages.append(HumanMessage(content=user_input))
# Invoke the model
response = deepseek.invoke(st.session_state.messages)
# Append AI response
st.session_state.messages.append(AIMessage(content=response))
return response
# User input
user_input = st.text_input("Ask a question about Python:")
if user_input:
with st.spinner("Getting answer..."):
answer = generate_response(user_input)
st.markdown(f"**Answer:** {answer}")
# Display chat history
if st.session_state.messages:
for msg in st.session_state.messages[1:]: # skip initial SystemMessage
if isinstance(msg, HumanMessage):
st.markdown(f"**You:** {msg.content}")
elif isinstance(msg, AIMessage):
st.markdown(f"**Bot:** {msg.content}")
st.button("โฌ
๏ธ Back to Home", on_click=lambda: switch_page("home"))
# Here you can load your Python LLM and chat interface
elif st.session_state.page == "sql":
st.title("SQL Chatbot ๐ข๏ธ")
if not hf_token:
st.error("Please add your Hugging Face API token as an environment variable.")
st.stop()
# Initialize the LLaMA model from HuggingFace (via Nebius provider)
llama_model = HuggingFaceEndpoint(
repo_id="meta-llama/Llama-3.1-8B-Instruct",
temperature=0.7,
max_new_tokens=512,
task="conversational",
huggingfacehub_api_token=hf_token,
)
llama = ChatHuggingFace(
llm=llama_model,
repo_id="meta-llama/Llama-3.1-8B-Instruct",
# provider="nebius",
temperature=0.7,
max_new_tokens=512,
task="conversational"
)
# Streamlit A
st.markdown("Ask anything related to SQL interviews!")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = [SystemMessage(content="Answer clearly like a technical 10 year experienced person in SQL .")]
# User input
user_input = st.text_input("๐ก Ask your SQL interview question:", placeholder="e.g., give me 10 SQL interview questions with answers")
def generate_response(user_input):
st.session_state.messages.append(HumanMessage(content=user_input))
response = llama.invoke(st.session_state.messages)
st.session_state.messages.append(AIMessage(content=response))
return response
# Display response
if user_input:
with st.spinner("Thinking..."):
answer = generate_response(user_input)
st.markdown(f"**Answer:** {answer}")
# Show chat history
st.markdown("### ๐ Chat History")
for msg in st.session_state.messages[1:]: # Skip SystemMessage
if isinstance(msg, HumanMessage):
st.markdown(f"**You:** {msg.content}")
elif isinstance(msg, AIMessage):
st.markdown(f"**Bot:** {msg.content}")
st.button("โฌ
๏ธ Back to Home", on_click=lambda: switch_page("home"))
# Load SQL chatbot here
elif st.session_state.page == "powerbi":
st.title("Power BI Chatbot ๐")
st.button("โฌ
๏ธ Back to Home", on_click=lambda: switch_page("home"))
elif st.session_state.page == "ml":
st.title("Machine Learning Chatbot ๐ค")
st.button("โฌ
๏ธ Back to Home", on_click=lambda: switch_page("home"))
elif st.session_state.page == "deeplearning":
st.title("Deep Learning Chatbot ๐ง ")
st.button("โฌ
๏ธ Back to Home", on_click=lambda: switch_page("home"))
elif st.session_state.page == "statistics":
st.title("Statistics Chatbot ๐")
st.button("โฌ
๏ธ Back to Home", on_click=lambda: switch_page("home"))
elif st.session_state.page == "genai":
st.title("GenAI Chatbot ๐")
st.button("โฌ
๏ธ Back to Home", on_click=lambda: switch_page("home"))
|