import streamlit as st import pandas as pd st.set_page_config(layout="centered") @st.cache_data(show_spinner=False) def load_data(file_path): dataset = pd.read_csv(file_path) return dataset @st.cache_data(show_spinner=False) def split_frame(input_df, rows): df = [input_df.loc[i : i + rows - 1, :] for i in range(0, len(input_df), rows)] return df file_path = st.file_uploader("Select CSV file to upload", type=["csv"]) if file_path: dataset = load_data(file_path) top_menu = st.columns(3) with top_menu[0]: sort = st.radio("Sort Data", options=["Yes", "No"], horizontal=1, index=1) if sort == "Yes": with top_menu[1]: sort_field = st.selectbox("Sort By", options=dataset.columns) with top_menu[2]: sort_direction = st.radio( "Direction", options=["⬆️", "⬇️"], horizontal=True ) dataset = dataset.sort_values( by=sort_field, ascending=sort_direction == "⬆️", ignore_index=True ) pagination = st.container() bottom_menu = st.columns((4, 1, 1)) with bottom_menu[2]: batch_size = st.selectbox("Page Size", options=[25, 50, 100]) with bottom_menu[1]: total_pages = ( int(len(dataset) / batch_size) if int(len(dataset) / batch_size) > 0 else 1 ) current_page = st.number_input( "Page", min_value=1, max_value=total_pages, step=1 ) with bottom_menu[0]: st.markdown(f"Page **{current_page}** of **{total_pages}** ") pages = split_frame(dataset, batch_size) pagination.dataframe(data=pages[current_page - 1], use_container_width=True)