Spaces:
Running
Running
import streamlit as st | |
from dotenv import load_dotenv | |
import pickle | |
from huggingface_hub import Repository | |
from PyPDF2 import PdfReader | |
from streamlit_extras.add_vertical_space import add_vertical_space | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.llms import OpenAI | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.callbacks import get_openai_callback | |
import os | |
# Step 1: Clone the Dataset Repository | |
repo = Repository( | |
local_dir="Private_Book", # Local directory to clone the repository | |
repo_type="dataset", # Specify that this is a dataset repository | |
clone_from="Anne31415/Private_Book", # Replace with your repository URL | |
token=os.environ["HUB_TOKEN"] # Use the secret token to authenticate | |
) | |
repo.git_pull() # Pull the latest changes (if any) | |
# Step 2: Load the PDF File | |
pdf_file_path = "Private_Book/KOMBI_all2.pdf" # Replace with your PDF file path | |
# Add this function to handle button clicks | |
def on_button_click(query): | |
st.session_state['button_clicked'] = query | |
def cloud_button(label, query, key=None, color=None, overlap=30): | |
button_id = f"cloud-button-{key or label}" | |
color_class = f"color-{color}" if color else "" | |
num_circles = max(3, min(35, len(label) // 4)) | |
circle_size = 60 | |
# Create circles with text enclosed | |
circles_html = ''.join([ | |
f'<div class="circle {color_class}" style="margin-right: -{overlap}px;"></div>' | |
for _ in range(num_circles) | |
]) | |
circles_html += f'<div class="circle-text">{label}</div>' # Add the text after the circles | |
cloud_button_html = f""" | |
<div class="cloud" id="{button_id}" style="margin-bottom: 20px;"> | |
<div class="wrapper {color_class}"> | |
{circles_html} | |
</div> | |
</div> | |
<style> | |
.cloud {{ | |
position: relative; | |
display: inline-flex; | |
align-items: center; | |
justify-content: center; | |
}} | |
.wrapper {{ | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
position: relative; | |
padding: 10px 20px; | |
}} | |
.circle {{ | |
background-color: #FF6347; | |
border-radius: 50%; | |
width: {circle_size}px; | |
height: {circle_size}px; | |
position: relative; | |
}} | |
.circle-text {{ | |
position: absolute; | |
top: 50%; | |
left: 50%; | |
transform: translate(-50%, -50%); | |
font-weight: bold; | |
z-index: 2; | |
white-space: nowrap; /* Prevent line breaks */ | |
text-align: center; /* Center the text horizontally and vertically */ | |
}} | |
.cloud:hover .circle {{ | |
transform: scale(1.1); /* Scale up the circles on hover */ | |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); /* Add a shadow on hover */ | |
}} | |
.color-1 .circle {{ background-color: #FFA07A; }} | |
.color-2 .circle {{ background-color: #FF7F50; }} | |
.color-3 .circle {{ background-color: #FF6347; }} | |
</style> | |
<script> | |
document.getElementById("{button_id}").onclick = function() {{ | |
window.parent.postMessage({{ | |
'type': 'streamlit:setComponentValue', | |
'value': {{"label": "{label}", "query": "{query}"}}, | |
'key': 'button_clicked' | |
}}, '*'); | |
}}; | |
</script> | |
""" | |
st.markdown(cloud_button_html, unsafe_allow_html=True) | |
def display_chat_history(chat_history): | |
for sender, msg, _ in chat_history: | |
background_color = "#FFA07A" if sender == "User" else "#caf" | |
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{sender}: {msg}</div>", unsafe_allow_html=True) | |
with st.sidebar: | |
st.title('BinDoc GmbH') | |
st.markdown("Experience revolutionary interaction with BinDocs Chat App, leveraging state-of-the-art AI technology.") | |
add_vertical_space(1) # Adjust as per the desired spacing | |
st.markdown(""" | |
Hello! I’m here to assist you with:<br><br> | |
📘 **Glossary Inquiries:**<br> | |
I can clarify terms like "DiGA", "AOP", or "BfArM", providing clear and concise explanations to help you understand our content better.<br><br> | |
🆘 **Help Page Navigation:**<br> | |
Ask me if you forgot your password or want to know more about topics related to the platform.<br><br> | |
📰 **Latest Whitepapers Insights:**<br> | |
Curious about our recent publications? Feel free to ask about our latest whitepapers!<br><br> | |
""", unsafe_allow_html=True) | |
add_vertical_space(1) # Adjust as per the desired spacing | |
st.write('Made with ❤️ by BinDoc GmbH') | |
api_key = os.getenv("OPENAI_API_KEY") | |
# Retrieve the API key from st.secrets | |
def load_pdf(file_path): | |
pdf_reader = PdfReader(file_path) | |
text = "" | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text=text) | |
store_name, _ = os.path.splitext(os.path.basename(file_path)) | |
if os.path.exists(f"{store_name}.pkl"): | |
with open(f"{store_name}.pkl", "rb") as f: | |
VectorStore = pickle.load(f) | |
else: | |
embeddings = OpenAIEmbeddings() | |
VectorStore = FAISS.from_texts(chunks, embedding=embeddings) | |
with open(f"{store_name}.pkl", "wb") as f: | |
pickle.dump(VectorStore, f) | |
return VectorStore | |
def load_chatbot(): | |
return load_qa_chain(llm=OpenAI(), chain_type="stuff") | |
def main(): | |
hide_streamlit_style = """ | |
<style> | |
#MainMenu {visibility: hidden;} | |
footer {visibility: hidden;} | |
</style> | |
""" | |
st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |
st.title("Welcome to BinDocs ChatBot! 🤖") | |
pdf_path = pdf_file_path | |
if not os.path.exists(pdf_path): | |
st.error("File not found. Please check the file path.") | |
return | |
if "chat_history" not in st.session_state: | |
st.session_state['chat_history'] = [] | |
if "button_clicked" not in st.session_state: | |
st.session_state['button_clicked'] = None | |
display_chat_history(st.session_state['chat_history']) | |
st.write("<!-- Start Spacer -->", unsafe_allow_html=True) | |
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True) | |
st.write("<!-- End Spacer -->", unsafe_allow_html=True) | |
if pdf_path is not None: | |
query = st.text_input("Ask questions about your PDF file (in any preferred language):") | |
cloud_buttons = [ | |
("Was genau ist ein Belegarzt?", "Was genau ist ein Belegarzt?", "1"), | |
("Wofür wird die Alpha-ID verwendet?", "Wofür wird die Alpha-ID verwendet?", "2"), | |
# Add more buttons as needed | |
] | |
for label, query, color in cloud_buttons: | |
cloud_button(label, query, color=color) | |
if st.session_state['button_clicked']: | |
query = st.session_state['button_clicked']['query'] | |
st.session_state['chat_history'].append(("User", query, "new")) | |
st.session_state['button_clicked'] = None | |
if st.button("Ask") or (query and query != st.session_state.get('last_query')): | |
st.session_state['chat_history'].append(("User", query, "new")) | |
st.session_state['last_query'] = query | |
if st.session_state['chat_history']: | |
loading_message = st.empty() | |
loading_message.text('Bot is thinking...') | |
VectorStore = load_pdf(pdf_path) | |
chain = load_chatbot() | |
docs = VectorStore.similarity_search(query=query, k=3) | |
with get_openai_callback() as cb: | |
response = chain.run(input_documents=docs, question=query) | |
st.session_state['chat_history'].append(("Bot", response, "new")) | |
new_messages = st.session_state['chat_history'][-2:] | |
for chat in new_messages: | |
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf" | |
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True) | |
st.write("<script>document.getElementById('response').scrollIntoView();</script>", unsafe_allow_html=True) | |
loading_message.empty() | |
st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']] | |
if __name__ == "__main__": | |
main() | |