Spaces:
Running
Running
File size: 13,822 Bytes
12d891e 8f2ad06 5a28160 d3a0859 f6250a9 ae1d88c 73d7e50 108ee46 ae8729e 5a94d35 ae8729e 5a94d35 f6250a9 73d7e50 f6250a9 d3a0859 f6250a9 884e5c5 f6250a9 ae8729e d3a0859 ae8729e d3a0859 ae8729e d3a0859 f6250a9 5a94d35 f6250a9 884e5c5 b06fd67 49d6825 7350525 49d6825 7350525 49d6825 6b3cf69 ae8729e b06fd67 957dbba 5a28160 3465dff 659d932 3465dff 9eb733f 3465dff b06fd67 f6250a9 b06fd67 f6250a9 b06fd67 f26adcb b06fd67 f6250a9 b06fd67 f6250a9 884e5c5 f6250a9 884e5c5 5ea80a9 884e5c5 1b661bd 884e5c5 1b661bd 884e5c5 1b661bd 884e5c5 b06fd67 1b661bd 5ea80a9 1b661bd 5ea80a9 1b661bd f6250a9 1b661bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import streamlit as st
from PIL import Image
import time
import streamlit_analytics
from dotenv import load_dotenv
import pickle
from huggingface_hub import Repository
from PyPDF2 import PdfReader
from streamlit_extras.add_vertical_space import add_vertical_space
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import OpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
import os
import pandas as pd
import pydeck as pdk
from urllib.error import URLError
# Initialize session state variables
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
st.set_page_config(layout="wide")
# Step 1: Clone the Dataset Repository
repo = Repository(
local_dir="Private_Book", # Local directory to clone the repository
repo_type="dataset", # Specify that this is a dataset repository
clone_from="Anne31415/Private_Book", # Replace with your repository URL
token=os.environ["HUB_TOKEN"] # Use the secret token to authenticate
)
repo.git_pull() # Pull the latest changes (if any)
# Step 2: Load the PDF File
pdf_path = "Private_Book/KOMBI_all2.pdf" # Replace with your PDF file path
api_key = os.getenv("OPENAI_API_KEY")
# Retrieve the API key from st.secrets
# Updated caching mechanism using st.cache_data
@st.cache_data(persist="disk") # Using persist="disk" to save cache across sessions
def load_vector_store(file_path, store_name, force_reload=False):
# Check if we need to force reload the vector store (e.g., when the PDF changes)
if force_reload or not os.path.exists(f"{store_name}.pkl"):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
text = load_pdf_text(file_path)
chunks = text_splitter.split_text(text=text)
embeddings = OpenAIEmbeddings()
VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
with open(f"{store_name}.pkl", "wb") as f:
pickle.dump(VectorStore, f)
else:
with open(f"{store_name}.pkl", "rb") as f:
VectorStore = pickle.load(f)
return VectorStore
# Utility function to load text from a PDF
def load_pdf_text(file_path):
pdf_reader = PdfReader(file_path)
text = ""
for page in pdf_reader.pages:
text += page.extract_text() or "" # Add fallback for pages where text extraction fails
return text
def load_chatbot():
return load_qa_chain(llm=OpenAI(), chain_type="stuff")
def display_chat_history(chat_history):
for chat in chat_history:
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
def page1():
try:
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
# Create columns for layout
col1, col2 = st.columns([3, 1]) # Adjust the ratio to your liking
with col1:
st.title("Welcome to BinDocs ChatBot!")
with col2:
# Load and display the image in the right column, which will be the top-right corner of the page
image = Image.open('BinDoc Logo (Quadratisch).png')
st.image(image, use_column_width='always')
# Start tracking user interactions
with streamlit_analytics.track():
if not os.path.exists(pdf_path):
st.error("File not found. Please check the file path.")
return
VectorStore = load_vector_store(pdf_path, "my_vector_store", force_reload=False)
if "chat_history" not in st.session_state:
st.session_state['chat_history'] = []
display_chat_history(st.session_state['chat_history'])
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
st.write("<!-- End Spacer -->", unsafe_allow_html=True)
new_messages_placeholder = st.empty()
query = st.text_input("Ask questions about your PDF file (in any preferred language):")
add_vertical_space(2) # Adjust as per the desired spacing
# Create two columns for the buttons
col1, col2 = st.columns(2)
with col1:
if st.button("Was kann ich mit dem Prognose-Analyse-Tool machen?"):
query = "Was kann ich mit dem Prognose-Analyse-Tool machen?"
if st.button("Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"):
query = "Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"
if st.button("Ich habe mein Meta-Password vergessen, wie kann ich es zurücksetzen?"):
query = "Ich habe mein Meta-Password vergessen, wie kann ich es zurücksetzen?"
with col2:
if st.button("Dies ist eine reine Test Frage, welche aber eine ausreichende Länge hat."):
query = "Dies ist eine reine Test Frage, welche aber eine ausreichende Länge hat."
if st.button("Was sagt mir denn generell die wundervolle Bevölkerungsentwicklung?"):
query = "Was sagt mir denn generell die wundervolle Bevölkerungsentwicklung?"
if st.button("Ob ich hier wohl viel schreibe, dass die Fragen vom Layout her passen?"):
query = "Ob ich hier wohl viel schreibe, dass die Fragen vom Layout her passen?"
if query:
st.session_state['chat_history'].append(("User", query, "new"))
# Start timing
start_time = time.time()
with st.spinner('Bot is thinking...'):
# Use the VectorStore loaded at the start from the session state
chain = load_chatbot()
docs = VectorStore.similarity_search(query=query, k=3)
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=query)
# Stop timing
end_time = time.time()
# Calculate duration
duration = end_time - start_time
# You can use Streamlit's text function to display the timing
st.text(f"Response time: {duration:.2f} seconds")
st.session_state['chat_history'].append(("Bot", response, "new"))
# Display new messages at the bottom
new_messages = st.session_state['chat_history'][-2:]
for chat in new_messages:
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
# Clear the input field after the query is made
query = ""
# Mark all messages as old after displaying
st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']]
except Exception as e:
st.error(f"Upsi, an unexpected error occurred: {e}")
# Optionally log the exception details to a file or error tracking service
def page2():
try:
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
# Create columns for layout
col1, col2 = st.columns([3, 1]) # Adjust the ratio to your liking
with col1:
st.title("Kodieren statt Frustrieren!")
with col2:
# Load and display the image in the right column, which will be the top-right corner of the page
image = Image.open('BinDoc Logo (Quadratisch).png')
st.image(image, use_column_width='always')
# Start tracking user interactions
with streamlit_analytics.track():
if not os.path.exists(pdf_path2):
st.error("File not found. Please check the file path.")
return
VectorStore = load_vector_store(pdf_path2, "my_vector_store", force_reload=False)
if "chat_history" not in st.session_state:
st.session_state['chat_history'] = []
display_chat_history(st.session_state['chat_history'])
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
st.write("<!-- End Spacer -->", unsafe_allow_html=True)
new_messages_placeholder = st.empty()
query = st.text_input("Ask questions about your PDF file (in any preferred language):")
add_vertical_space(2) # Adjust as per the desired spacing
# Create two columns for the buttons
col1, col2 = st.columns(2)
with col1:
if st.button("Was kann ich mit dem Prognose-Analyse-Tool machen?"):
query = "Was kann ich mit dem Prognose-Analyse-Tool machen?"
if st.button("Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"):
query = "Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"
if st.button("Ich habe mein Meta-Password vergessen, wie kann ich es zurücksetzen?"):
query = "Ich habe mein Meta-Password vergessen, wie kann ich es zurücksetzen?"
with col2:
if st.button("Dies ist eine reine Test Frage, welche aber eine ausreichende Länge hat."):
query = "Dies ist eine reine Test Frage, welche aber eine ausreichende Länge hat."
if st.button("Was sagt mir denn generell die wundervolle Bevölkerungsentwicklung?"):
query = "Was sagt mir denn generell die wundervolle Bevölkerungsentwicklung?"
if st.button("Ob ich hier wohl viel schreibe, dass die Fragen vom Layout her passen?"):
query = "Ob ich hier wohl viel schreibe, dass die Fragen vom Layout her passen?"
if query:
st.session_state['chat_history'].append(("User", query, "new"))
# Start timing
start_time = time.time()
with st.spinner('Bot is thinking...'):
# Use the VectorStore loaded at the start from the session state
chain = load_chatbot()
docs = VectorStore.similarity_search(query=query, k=3)
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=query)
# Stop timing
end_time = time.time()
# Calculate duration
duration = end_time - start_time
# You can use Streamlit's text function to display the timing
st.text(f"Response time: {duration:.2f} seconds")
st.session_state['chat_history'].append(("Bot", response, "new"))
# Display new messages at the bottom
new_messages = st.session_state['chat_history'][-2:]
for chat in new_messages:
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
# Clear the input field after the query is made
query = ""
# Mark all messages as old after displaying
st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']]
except Exception as e:
st.error(f"Upsi, an unexpected error occurred: {e}")
# Optionally log the exception details to a file or error tracking service
def main():
# Sidebar content
with st.sidebar:
st.title('BinDoc GmbH')
st.markdown("Experience revolutionary interaction with BinDocs Chat App, leveraging state-of-the-art AI technology.")
add_vertical_space(1)
page = st.sidebar.selectbox("Choose a page", ["Page 1", "Page 2"])
add_vertical_space(1)
st.write('Made with ❤️ by BinDoc GmbH')
# Main area content based on page selection
if page == "Main ChatBot":
page1()
elif page == "Kodierhilfe":
page2()
if __name__ == "__main__":
main()
|