Spaces:
Sleeping
Sleeping
File size: 7,062 Bytes
12d891e f6250a9 d796104 f6250a9 73d7e50 f6250a9 73d7e50 f6250a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import streamlit as st
import streamlit_analytics
from dotenv import load_dotenv
import pickle
from huggingface_hub import Repository
from PyPDF2 import PdfReader
from streamlit_extras.add_vertical_space import add_vertical_space
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import OpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
streamlit_analytics.start_tracking()
# Step 1: Clone the Dataset Repository
repo = Repository(
local_dir="Private_Book", # Local directory to clone the repository
repo_type="dataset", # Specify that this is a dataset repository
clone_from="Anne31415/Private_Book", # Replace with your repository URL
token=os.environ["HUB_TOKEN"] # Use the secret token to authenticate
)
repo.git_pull() # Pull the latest changes (if any)
# Step 2: Load the PDF File
pdf_file_path = "Private_Book/KOMBI_all2.pdf" # Replace with your PDF file path
with st.sidebar:
st.title('BinDoc GmbH')
st.markdown("Experience revolutionary interaction with BinDocs Chat App, leveraging state-of-the-art AI technology.")
add_vertical_space(1) # Adjust as per the desired spacing
st.markdown("""
Hello! I’m here to assist you with:<br><br>
📘 **Glossary Inquiries:**<br>
I can clarify terms like "DiGA", "AOP", or "BfArM", providing clear and concise explanations to help you understand our content better.<br><br>
🆘 **Help Page Navigation:**<br>
Ask me if you forgot your password or want to know more about topics related to the platform.<br><br>
📰 **Latest Whitepapers Insights:**<br>
Curious about our recent publications? Feel free to ask about our latest whitepapers!<br><br>
""", unsafe_allow_html=True)
add_vertical_space(1) # Adjust as per the desired spacing
st.write('Made with ❤️ by BinDoc GmbH')
api_key = os.getenv("OPENAI_API_KEY")
# Retrieve the API key from st.secrets
def load_pdf(file_path):
pdf_reader = PdfReader(file_path)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text=text)
store_name, _ = os.path.splitext(os.path.basename(file_path))
if os.path.exists(f"{store_name}.pkl"):
with open(f"{store_name}.pkl", "rb") as f:
VectorStore = pickle.load(f)
else:
embeddings = OpenAIEmbeddings()
VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
with open(f"{store_name}.pkl", "wb") as f:
pickle.dump(VectorStore, f)
return VectorStore
def load_chatbot():
return load_qa_chain(llm=OpenAI(), chain_type="stuff")
def main():
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
# Main content
st.title("Welcome to BinDocs ChatBot! 🤖")
# Directly specifying the path to the PDF file
pdf_path = pdf_file_path
if not os.path.exists(pdf_path):
st.error("File not found. Please check the file path.")
return
if "chat_history" not in st.session_state:
st.session_state['chat_history'] = []
display_chat_history(st.session_state['chat_history'])
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
st.write("<!-- End Spacer -->", unsafe_allow_html=True)
new_messages_placeholder = st.empty()
if pdf_path is not None:
query = st.text_input("Ask questions about your PDF file (in any preferred language):")
if st.button("Was genau ist ein Belegarzt?"):
query = "Was genau ist ein Belegarzt?"
if st.button("Wofür wird die Alpha-ID verwendet?"):
query = "Wofür wird die Alpha-ID verwendet?"
if st.button("Was sind die Vorteile des ambulanten operierens?"):
query = "Was sind die Vorteile des ambulanten operierens?"
if st.button("Was kann ich mit dem Prognose-Analyse Toll machen?"):
query = "Was kann ich mit dem Prognose-Analyse Toll machen?"
if st.button("Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"):
query = "Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"
if st.button("Ich habe mein Meta Password vergessen, wie kann ich es zurücksetzen?"):
query = ("Ich habe mein Meta Password vergessen, wie kann ich es zurücksetzen?")
if st.button("Ask") or (not st.session_state['chat_history'] and query) or (st.session_state['chat_history'] and query != st.session_state['chat_history'][-1][1]):
st.session_state['chat_history'].append(("User", query, "new"))
loading_message = st.empty()
loading_message.text('Bot is thinking...')
VectorStore = load_pdf(pdf_path)
chain = load_chatbot()
docs = VectorStore.similarity_search(query=query, k=3)
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=query)
st.session_state['chat_history'].append(("Bot", response, "new"))
# Display new messages at the bottom
new_messages = st.session_state['chat_history'][-2:]
for chat in new_messages:
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
# Scroll to the latest response using JavaScript
st.write("<script>document.getElementById('response').scrollIntoView();</script>", unsafe_allow_html=True)
loading_message.empty()
# Clear the input field by setting the query variable to an empty string
query = ""
# Mark all messages as old after displaying
st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']]
def display_chat_history(chat_history):
for chat in chat_history:
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
if __name__ == "__main__":
main()
streamlit_analytics.stop_tracking()
streamlit_analytics.track(unsafe_password="Anne31415") |