Speaker-Diarization / shared.py
Saiyaswanth007's picture
Verbose
f722385
import numpy as np
import torch
import time
import threading
import os
import queue
import torchaudio
from scipy.spatial.distance import cosine
from scipy.signal import resample
import logging
import urllib.request
# Import RealtimeSTT for transcription
from RealtimeSTT import AudioToTextRecorder
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Simplified configuration parameters
SILENCE_THRESHS = [0, 0.4]
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
FINAL_BEAM_SIZE = 5
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
REALTIME_BEAM_SIZE = 5
TRANSCRIPTION_LANGUAGE = "en"
SILERO_SENSITIVITY = 0.4
WEBRTC_SENSITIVITY = 3
MIN_LENGTH_OF_RECORDING = 0.7
PRE_RECORDING_BUFFER_DURATION = 0.35
# Speaker change detection parameters
DEFAULT_CHANGE_THRESHOLD = 0.65
EMBEDDING_HISTORY_SIZE = 5
MIN_SEGMENT_DURATION = 1.5
DEFAULT_MAX_SPEAKERS = 4
ABSOLUTE_MAX_SPEAKERS = 8
# Global variables
SAMPLE_RATE = 16000
BUFFER_SIZE = 1024
CHANNELS = 1
# Speaker colors - more distinguishable colors
SPEAKER_COLORS = [
"#FF6B6B", # Red
"#4ECDC4", # Teal
"#45B7D1", # Blue
"#96CEB4", # Green
"#FFEAA7", # Yellow
"#DDA0DD", # Plum
"#98D8C8", # Mint
"#F7DC6F", # Gold
]
SPEAKER_COLOR_NAMES = [
"Red", "Teal", "Blue", "Green", "Yellow", "Plum", "Mint", "Gold"
]
class SpeechBrainEncoder:
"""ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
def __init__(self, device="cpu"):
self.device = device
self.model = None
self.embedding_dim = 192
self.model_loaded = False
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
os.makedirs(self.cache_dir, exist_ok=True)
def _download_model(self):
"""Download pre-trained SpeechBrain ECAPA-TDNN model if not present"""
model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt"
model_path = os.path.join(self.cache_dir, "embedding_model.ckpt")
if not os.path.exists(model_path):
print(f"Downloading ECAPA-TDNN model to {model_path}...")
urllib.request.urlretrieve(model_url, model_path)
return model_path
def load_model(self):
"""Load the ECAPA-TDNN model"""
try:
# Import SpeechBrain
from speechbrain.pretrained import EncoderClassifier
# Get model path
model_path = self._download_model()
# Load the pre-trained model
self.model = EncoderClassifier.from_hparams(
source="speechbrain/spkrec-ecapa-voxceleb",
savedir=self.cache_dir,
run_opts={"device": self.device}
)
self.model_loaded = True
return True
except Exception as e:
print(f"Error loading ECAPA-TDNN model: {e}")
return False
def embed_utterance(self, audio, sr=16000):
"""Extract speaker embedding from audio"""
if not self.model_loaded:
raise ValueError("Model not loaded. Call load_model() first.")
try:
if isinstance(audio, np.ndarray):
# Ensure audio is float32 and properly normalized
audio = audio.astype(np.float32)
if np.max(np.abs(audio)) > 1.0:
audio = audio / np.max(np.abs(audio))
waveform = torch.tensor(audio).unsqueeze(0)
else:
waveform = audio.unsqueeze(0)
# Resample if necessary
if sr != 16000:
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
with torch.no_grad():
embedding = self.model.encode_batch(waveform)
return embedding.squeeze().cpu().numpy()
except Exception as e:
logger.error(f"Error extracting embedding: {e}")
return np.zeros(self.embedding_dim)
class AudioProcessor:
"""Processes audio data to extract speaker embeddings"""
def __init__(self, encoder):
self.encoder = encoder
self.audio_buffer = []
self.min_audio_length = int(SAMPLE_RATE * 1.0) # Minimum 1 second of audio
def add_audio_chunk(self, audio_chunk):
"""Add audio chunk to buffer"""
self.audio_buffer.extend(audio_chunk)
# Keep buffer from getting too large
max_buffer_size = int(SAMPLE_RATE * 10) # 10 seconds max
if len(self.audio_buffer) > max_buffer_size:
self.audio_buffer = self.audio_buffer[-max_buffer_size:]
def extract_embedding_from_buffer(self):
"""Extract embedding from current audio buffer"""
if len(self.audio_buffer) < self.min_audio_length:
return None
try:
# Use the last portion of the buffer for embedding
audio_segment = np.array(self.audio_buffer[-self.min_audio_length:], dtype=np.float32)
# Normalize audio
if np.max(np.abs(audio_segment)) > 0:
audio_segment = audio_segment / np.max(np.abs(audio_segment))
else:
return None
embedding = self.encoder.embed_utterance(audio_segment)
return embedding
except Exception as e:
logger.error(f"Embedding extraction error: {e}")
return None
class SpeakerChangeDetector:
"""Improved speaker change detector"""
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
self.embedding_dim = embedding_dim
self.change_threshold = change_threshold
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
self.current_speaker = 0
self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
self.speaker_centroids = [None] * self.max_speakers
self.last_change_time = time.time()
self.last_similarity = 1.0
self.active_speakers = set([0])
self.segment_counter = 0
def set_max_speakers(self, max_speakers):
"""Update the maximum number of speakers"""
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
if new_max < self.max_speakers:
# Remove speakers beyond the new limit
for speaker_id in list(self.active_speakers):
if speaker_id >= new_max:
self.active_speakers.discard(speaker_id)
if self.current_speaker >= new_max:
self.current_speaker = 0
# Resize arrays
if new_max > self.max_speakers:
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
self.speaker_centroids.extend([None] * (new_max - self.max_speakers))
else:
self.speaker_embeddings = self.speaker_embeddings[:new_max]
self.speaker_centroids = self.speaker_centroids[:new_max]
self.max_speakers = new_max
def set_change_threshold(self, threshold):
"""Update the threshold for detecting speaker changes"""
self.change_threshold = max(0.1, min(threshold, 0.95))
def add_embedding(self, embedding, timestamp=None):
"""Add a new embedding and detect speaker changes"""
current_time = timestamp or time.time()
self.segment_counter += 1
# Initialize first speaker
if not self.speaker_embeddings[0]:
self.speaker_embeddings[0].append(embedding)
self.speaker_centroids[0] = embedding.copy()
self.active_speakers.add(0)
return 0, 1.0
# Calculate similarity with current speaker
current_centroid = self.speaker_centroids[self.current_speaker]
if current_centroid is not None:
similarity = 1.0 - cosine(embedding, current_centroid)
else:
similarity = 0.5
self.last_similarity = similarity
# Check for speaker change
time_since_last_change = current_time - self.last_change_time
speaker_changed = False
if time_since_last_change >= MIN_SEGMENT_DURATION and similarity < self.change_threshold:
# Find best matching speaker
best_speaker = self.current_speaker
best_similarity = similarity
for speaker_id in self.active_speakers:
if speaker_id == self.current_speaker:
continue
centroid = self.speaker_centroids[speaker_id]
if centroid is not None:
speaker_similarity = 1.0 - cosine(embedding, centroid)
if speaker_similarity > best_similarity and speaker_similarity > self.change_threshold:
best_similarity = speaker_similarity
best_speaker = speaker_id
# If no good match found and we can add a new speaker
if best_speaker == self.current_speaker and len(self.active_speakers) < self.max_speakers:
for new_id in range(self.max_speakers):
if new_id not in self.active_speakers:
best_speaker = new_id
self.active_speakers.add(new_id)
break
if best_speaker != self.current_speaker:
self.current_speaker = best_speaker
self.last_change_time = current_time
speaker_changed = True
# Update speaker embeddings and centroids
self.speaker_embeddings[self.current_speaker].append(embedding)
# Keep only recent embeddings (sliding window)
max_embeddings = 20
if len(self.speaker_embeddings[self.current_speaker]) > max_embeddings:
self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-max_embeddings:]
# Update centroid
if self.speaker_embeddings[self.current_speaker]:
self.speaker_centroids[self.current_speaker] = np.mean(
self.speaker_embeddings[self.current_speaker], axis=0
)
return self.current_speaker, similarity
def get_color_for_speaker(self, speaker_id):
"""Return color for speaker ID"""
if 0 <= speaker_id < len(SPEAKER_COLORS):
return SPEAKER_COLORS[speaker_id]
return "#FFFFFF"
def get_status_info(self):
"""Return status information"""
speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
return {
"current_speaker": self.current_speaker,
"speaker_counts": speaker_counts,
"active_speakers": len(self.active_speakers),
"max_speakers": self.max_speakers,
"last_similarity": self.last_similarity,
"threshold": self.change_threshold,
"segment_counter": self.segment_counter
}
class RealtimeSpeakerDiarization:
def __init__(self):
self.encoder = None
self.audio_processor = None
self.speaker_detector = None
self.recorder = None # RealtimeSTT recorder
self.sentence_queue = queue.Queue()
self.full_sentences = []
self.sentence_speakers = []
self.pending_sentences = []
self.current_conversation = ""
self.is_running = False
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
self.max_speakers = DEFAULT_MAX_SPEAKERS
self.last_transcription = ""
self.transcription_lock = threading.Lock()
def initialize_models(self):
"""Initialize the speaker encoder model"""
try:
device_str = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device_str}")
self.encoder = SpeechBrainEncoder(device=device_str)
success = self.encoder.load_model()
if success:
self.audio_processor = AudioProcessor(self.encoder)
self.speaker_detector = SpeakerChangeDetector(
embedding_dim=self.encoder.embedding_dim,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
# Initialize RealtimeSTT transcription model
self.recorder = AudioToTextRecorder(
spinner=False,
use_microphone=False,
model=FINAL_TRANSCRIPTION_MODEL,
language=TRANSCRIPTION_LANGUAGE,
silero_sensitivity=SILERO_SENSITIVITY,
webrtc_sensitivity=WEBRTC_SENSITIVITY,
post_speech_silence_duration=0.7,
min_length_of_recording=MIN_LENGTH_OF_RECORDING,
pre_recording_buffer_duration=PRE_RECORDING_BUFFER_DURATION,
enable_realtime_transcription=True,
realtime_processing_pause=0.2,
realtime_model_type=REALTIME_TRANSCRIPTION_MODEL,
on_realtime_transcription_update=self.live_text_detected,
on_recording_stop=self.process_final_text,
level=logging.WARNING,
# Don't start processing immediately
handle_buffer_overflow=True
)
logger.info("Models initialized successfully!")
return True
else:
logger.error("Failed to load models")
return False
except Exception as e:
logger.error(f"Model initialization error: {e}")
return False
def live_text_detected(self, text):
"""Callback for real-time transcription updates"""
with self.transcription_lock:
self.last_transcription = text.strip()
def process_final_text(self, text):
"""Process final transcribed text with speaker embedding"""
text = text.strip()
if text:
try:
# Get audio data for this transcription
audio_bytes = getattr(self.recorder, 'last_transcription_bytes', None)
if audio_bytes:
self.sentence_queue.put((text, audio_bytes))
else:
# If no audio bytes, use current speaker
self.sentence_queue.put((text, None))
except Exception as e:
logger.error(f"Error processing final text: {e}")
def process_sentence_queue(self):
"""Process sentences in the queue for speaker detection"""
while self.is_running:
try:
text, audio_bytes = self.sentence_queue.get(timeout=1)
current_speaker = self.speaker_detector.current_speaker
if audio_bytes:
# Convert audio data and extract embedding
audio_int16 = np.frombuffer(audio_bytes, dtype=np.int16)
audio_float = audio_int16.astype(np.float32) / 32768.0
# Extract embedding
embedding = self.audio_processor.encoder.embed_utterance(audio_float)
if embedding is not None:
current_speaker, similarity = self.speaker_detector.add_embedding(embedding)
# Store sentence with speaker
with self.transcription_lock:
self.full_sentences.append((text, current_speaker))
self.update_conversation_display()
except queue.Empty:
continue
except Exception as e:
logger.error(f"Error processing sentence: {e}")
def update_conversation_display(self):
"""Update the conversation display"""
try:
sentences_with_style = []
for sentence_text, speaker_id in self.full_sentences:
color = self.speaker_detector.get_color_for_speaker(speaker_id)
speaker_name = f"Speaker {speaker_id + 1}"
sentences_with_style.append(
f'<span style="color:{color}; font-weight: bold;">{speaker_name}:</span> '
f'<span style="color:#333333;">{sentence_text}</span>'
)
# Add current transcription if available
if self.last_transcription:
current_color = self.speaker_detector.get_color_for_speaker(self.speaker_detector.current_speaker)
current_speaker = f"Speaker {self.speaker_detector.current_speaker + 1}"
sentences_with_style.append(
f'<span style="color:{current_color}; font-weight: bold; opacity: 0.7;">{current_speaker}:</span> '
f'<span style="color:#666666; font-style: italic;">{self.last_transcription}...</span>'
)
if sentences_with_style:
self.current_conversation = "<br><br>".join(sentences_with_style)
else:
self.current_conversation = "<i>Waiting for speech input...</i>"
except Exception as e:
logger.error(f"Error updating conversation display: {e}")
self.current_conversation = f"<i>Error: {str(e)}</i>"
def start_recording(self):
"""Start the recording and transcription process"""
if self.encoder is None:
return "Please initialize models first!"
try:
# Setup audio processor for speaker embeddings
self.is_running = True
# Start processing threads
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
self.sentence_thread.start()
# Start the RealtimeSTT recorder explicitly
if self.recorder:
# First make sure it's stopped if it was running
try:
if getattr(self.recorder, '_is_running', False):
self.recorder.stop()
except Exception:
pass
# Then start it fresh
self.recorder.start()
logger.info("RealtimeSTT recorder started")
return "Recording started successfully!"
except Exception as e:
logger.error(f"Error starting recording: {e}")
return f"Error starting recording: {e}"
def stop_recording(self):
"""Stop the recording process"""
self.is_running = False
# Stop the RealtimeSTT recorder
if self.recorder:
try:
self.recorder.stop()
logger.info("RealtimeSTT recorder stopped")
# Reset the last transcription
with self.transcription_lock:
self.last_transcription = ""
except Exception as e:
logger.error(f"Error stopping recorder: {e}")
return "Recording stopped!"
def clear_conversation(self):
"""Clear all conversation data"""
with self.transcription_lock:
self.full_sentences = []
self.last_transcription = ""
self.current_conversation = "Conversation cleared!"
if self.speaker_detector:
self.speaker_detector = SpeakerChangeDetector(
embedding_dim=self.encoder.embedding_dim,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
return "Conversation cleared!"
def update_settings(self, threshold, max_speakers):
"""Update speaker detection settings"""
self.change_threshold = threshold
self.max_speakers = max_speakers
if self.speaker_detector:
self.speaker_detector.set_change_threshold(threshold)
self.speaker_detector.set_max_speakers(max_speakers)
return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
def get_formatted_conversation(self):
"""Get the formatted conversation with structured data"""
try:
# Create conversation HTML format as before
html_content = self.current_conversation
# Create structured data
structured_data = {
"html_content": html_content,
"sentences": [],
"current_transcript": self.last_transcription,
"current_speaker": self.speaker_detector.current_speaker if self.speaker_detector else 0
}
# Add sentence data
for sentence_text, speaker_id in self.full_sentences:
color = self.speaker_detector.get_color_for_speaker(speaker_id) if self.speaker_detector else "#FFFFFF"
structured_data["sentences"].append({
"text": sentence_text,
"speaker_id": speaker_id,
"speaker_name": f"Speaker {speaker_id + 1}",
"color": color
})
return html_content
except Exception as e:
logger.error(f"Error formatting conversation: {e}")
return f"<i>Error formatting conversation: {str(e)}</i>"
def get_status_info(self):
"""Get current status information as structured data"""
if not self.speaker_detector:
return {"error": "Speaker detector not initialized"}
try:
speaker_status = self.speaker_detector.get_status_info()
# Format speaker activity
speaker_activity = []
for i in range(speaker_status['max_speakers']):
color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}"
count = speaker_status['speaker_counts'][i]
active = count > 0
speaker_activity.append({
"id": i,
"name": f"Speaker {i+1}",
"color": SPEAKER_COLORS[i] if i < len(SPEAKER_COLORS) else "#FFFFFF",
"color_name": color_name,
"segment_count": count,
"active": active
})
# Create structured status object
status = {
"current_speaker": speaker_status['current_speaker'],
"current_speaker_name": f"Speaker {speaker_status['current_speaker'] + 1}",
"active_speakers_count": speaker_status['active_speakers'],
"max_speakers": speaker_status['max_speakers'],
"last_similarity": speaker_status['last_similarity'],
"change_threshold": speaker_status['threshold'],
"total_sentences": len(self.full_sentences),
"segments_processed": speaker_status['segment_counter'],
"speaker_activity": speaker_activity,
"timestamp": time.time()
}
# Also create a formatted text version for UI display
status_lines = [
f"**Current Speaker:** {status['current_speaker'] + 1}",
f"**Active Speakers:** {status['active_speakers_count']} of {status['max_speakers']}",
f"**Last Similarity:** {status['last_similarity']:.3f}",
f"**Change Threshold:** {status['change_threshold']:.2f}",
f"**Total Sentences:** {status['total_sentences']}",
f"**Segments Processed:** {status['segments_processed']}",
"",
"**Speaker Activity:**"
]
for speaker in status["speaker_activity"]:
active = "🟢" if speaker["active"] else "⚫"
status_lines.append(f"{active} Speaker {speaker['id']+1} ({speaker['color_name']}): {speaker['segment_count']} segments")
status["formatted_text"] = "\n".join(status_lines)
return status
except Exception as e:
error_msg = f"Error getting status: {e}"
logger.error(error_msg)
return {"error": error_msg, "formatted_text": error_msg}
def process_audio_chunk(self, audio_data, sample_rate=16000):
"""Process audio chunk from WebSocket input"""
if not self.is_running or self.audio_processor is None:
return {"status": "not_running"}
try:
# Convert bytes to numpy array if needed
if isinstance(audio_data, bytes):
audio_data = np.frombuffer(audio_data, dtype=np.int16).astype(np.float32) / 32768.0
# Ensure audio is float32
if isinstance(audio_data, np.ndarray):
if audio_data.dtype != np.float32:
audio_data = audio_data.astype(np.float32)
else:
audio_data = np.array(audio_data, dtype=np.float32)
# Ensure mono
if len(audio_data.shape) > 1:
audio_data = np.mean(audio_data, axis=1) if audio_data.shape[1] > 1 else audio_data.flatten()
# Check if audio has meaningful content (not just silence)
audio_level = np.abs(audio_data).mean()
is_silence = audio_level < 0.01 # Threshold for silence
# Skip processing for silent audio
if is_silence:
return {
"status": "silent",
"buffer_size": len(self.audio_processor.audio_buffer),
"speaker_id": self.speaker_detector.current_speaker,
"conversation_html": self.current_conversation
}
# Normalize if needed
if np.max(np.abs(audio_data)) > 1.0:
audio_data = audio_data / np.max(np.abs(audio_data))
# Add to audio processor buffer for speaker detection
self.audio_processor.add_audio_chunk(audio_data)
# Feed to RealtimeSTT for transcription
if self.recorder:
# Convert to int16 for RealtimeSTT
audio_int16 = (audio_data * 32768).astype(np.int16)
self.recorder.feed_audio(audio_int16.tobytes())
# Periodically extract embeddings for speaker detection
embedding = None
speaker_id = self.speaker_detector.current_speaker
similarity = 1.0
if len(self.audio_processor.audio_buffer) >= SAMPLE_RATE and (len(self.audio_processor.audio_buffer) - SAMPLE_RATE) % (SAMPLE_RATE // 2)==0:
embedding = self.audio_processor.extract_embedding_from_buffer()
if embedding is not None:
speaker_id, similarity = self.speaker_detector.add_embedding(embedding)
# Return processing result
return {
"status": "processed",
"buffer_size": len(self.audio_processor.audio_buffer),
"speaker_id": int(speaker_id) if not isinstance(speaker_id, int) else speaker_id,
"similarity": float(similarity) if embedding is not None and not isinstance(similarity, float) else similarity,
"conversation_html": self.current_conversation
}
except Exception as e:
logger.error(f"Error processing audio chunk: {e}")
return {"status": "error", "message": str(e)}
def resample_audio(self, audio_bytes, from_rate, to_rate):
"""Resample audio to target sample rate"""
try:
audio_np = np.frombuffer(audio_bytes, dtype=np.int16)
num_samples = len(audio_np)
num_target_samples = int(num_samples * to_rate / from_rate)
resampled = resample(audio_np, num_target_samples)
return resampled.astype(np.int16).tobytes()
except Exception as e:
logger.error(f"Error resampling audio: {e}")
return audio_bytes