Spaces:
Sleeping
Sleeping
File size: 20,105 Bytes
97a4ae5 e1de00e 3a4cb0f e1de00e 3a4cb0f 1dd5469 a905808 7f7357a 1dd5469 e1de00e 3a4cb0f 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 3a4cb0f e1de00e 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 e1de00e 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 e1de00e 1dd5469 e1de00e 1dd5469 3a4cb0f 1dd5469 e1de00e 1dd5469 3a4cb0f 1dd5469 e1de00e 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 e1de00e 1dd5469 e1de00e 1dd5469 3a4cb0f e1de00e 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 3a4cb0f e1de00e 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 e1de00e 3a4cb0f 1dd5469 3a4cb0f 1dd5469 e1de00e 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 54ccef4 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 17cb251 1dd5469 3a4cb0f 1dd5469 e1de00e 3a4cb0f 1dd5469 7f7357a 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 3a4cb0f 1dd5469 3a4cb0f 7f7357a 3a4cb0f 1dd5469 3a4cb0f b45f016 1dd5469 b45f016 1dd5469 3a4cb0f 1dd5469 3a4cb0f 7f7357a 1dd5469 3a4cb0f b9d6018 3a4cb0f 1dd5469 3a4cb0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
import gradio as gr
import asyncio
import websockets
import json
import logging
import time
from typing import Dict, Any, Optional
import threading
from queue import Queue
import base64
import numpy as np
import os
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Environment-configurable HF Space URL (matching backend.py)
HF_SPACE_URL = os.getenv("HF_SPACE_URL", "https://androidguy-speaker-diarization.hf.space")
API_WS = f"wss://{HF_SPACE_URL}/ws_inference"
class TranscriptionWebSocketServer:
"""WebSocket server that receives audio from backend and returns transcription results"""
def __init__(self):
self.connected_clients = set()
self.is_running = False
self.websocket_server = None
self.conversation_history = []
self.processing_stats = {
"total_audio_chunks": 0,
"total_transcriptions": 0,
"last_audio_received": None,
"server_start_time": time.time(),
"backend_url": HF_SPACE_URL
}
async def handle_client_connection(self, websocket, path):
"""Handle incoming WebSocket connections from the backend"""
client_addr = websocket.remote_address
logger.info(f"Backend client connected from {client_addr}")
self.connected_clients.add(websocket)
try:
# Send initial connection acknowledgment
await websocket.send(json.dumps({
"type": "connection_ack",
"status": "connected",
"timestamp": time.time(),
"message": "HuggingFace transcription service ready"
}))
# Handle incoming messages/audio data
async for message in websocket:
try:
if isinstance(message, bytes):
# Handle binary audio data
await self.process_audio_data(message, websocket)
else:
# Handle text messages (JSON)
await self.handle_text_message(message, websocket)
except Exception as e:
logger.error(f"Error processing message: {e}")
await self.send_error(websocket, f"Processing error: {str(e)}")
except websockets.exceptions.ConnectionClosed:
logger.info("Backend client disconnected")
except Exception as e:
logger.error(f"Client connection error: {e}")
finally:
self.connected_clients.discard(websocket)
logger.info(f"Client removed. Active connections: {len(self.connected_clients)}")
async def process_audio_data(self, audio_data: bytes, websocket):
"""Process incoming audio data and return transcription results"""
try:
self.processing_stats["total_audio_chunks"] += 1
self.processing_stats["last_audio_received"] = time.time()
logger.debug(f"Received {len(audio_data)} bytes of audio data")
# Try to import and use your inference functions
try:
from inference import transcribe_audio, identify_speakers
# Process the audio for transcription
transcription_result = await transcribe_audio(audio_data)
if transcription_result:
# Process for speaker diarization if available
try:
speaker_info = await identify_speakers(audio_data)
transcription_result.update(speaker_info)
except Exception as e:
logger.warning(f"Speaker diarization failed: {e}")
transcription_result["speaker"] = "Unknown"
# Update conversation history
self.update_conversation_history(transcription_result)
# Send result back to backend
response = {
"type": "processing_result",
"timestamp": time.time(),
"data": transcription_result
}
await websocket.send(json.dumps(response))
self.processing_stats["total_transcriptions"] += 1
logger.info(f"Sent transcription result: {transcription_result.get('text', '')[:50]}...")
except ImportError:
# Fallback if inference module is not available
logger.warning("Inference module not found, using mock transcription")
# Try to use shared.py for processing if available
try:
from shared import RealtimeSpeakerDiarization
# Initialize if not already initialized
if not hasattr(self, 'diarization_system'):
self.diarization_system = RealtimeSpeakerDiarization()
await asyncio.to_thread(self.diarization_system.initialize_models)
await asyncio.to_thread(self.diarization_system.start_recording)
# Process the audio chunk
result = await asyncio.to_thread(self.diarization_system.process_audio_chunk, audio_data)
# Format result for response
if result and result["status"] != "error":
mock_result = {
"text": result.get("text", f"[Processing {len(audio_data)} bytes]"),
"speaker": f"Speaker_{result.get('speaker_id', 0) + 1}",
"confidence": result.get("similarity", 0.85),
"timestamp": time.time()
}
else:
# Fallback mock result
mock_result = {
"text": f"[Mock transcription - {len(audio_data)} bytes processed]",
"speaker": "Speaker_1",
"confidence": 0.85,
"timestamp": time.time()
}
# Update conversation history
self.update_conversation_history(mock_result)
response = {
"type": "processing_result",
"timestamp": time.time(),
"data": mock_result
}
await websocket.send(json.dumps(response))
self.processing_stats["total_transcriptions"] += 1
except Exception as e:
logger.warning(f"Failed to use shared module: {e}")
# Basic mock transcription as last resort
mock_result = {
"text": f"[Mock transcription - {len(audio_data)} bytes processed]",
"speaker": "Speaker_1",
"confidence": 0.85,
"timestamp": time.time()
}
self.update_conversation_history(mock_result)
response = {
"type": "processing_result",
"timestamp": time.time(),
"data": mock_result
}
await websocket.send(json.dumps(response))
except Exception as e:
logger.error(f"Audio processing error: {e}")
await self.send_error(websocket, f"Audio processing failed: {str(e)}")
async def handle_text_message(self, message: str, websocket):
"""Handle text-based messages from backend"""
try:
data = json.loads(message)
message_type = data.get("type", "unknown")
logger.info(f"Received message type: {message_type}")
if message_type == "ping":
# Respond to ping with pong
await websocket.send(json.dumps({
"type": "pong",
"timestamp": time.time()
}))
elif message_type == "config":
# Handle configuration updates
logger.info(f"Configuration update: {data}")
# Apply configuration settings if available
settings = data.get("settings", {})
if "max_speakers" in settings:
max_speakers = settings.get("max_speakers")
logger.info(f"Setting max_speakers to {max_speakers}")
if "threshold" in settings:
threshold = settings.get("threshold")
logger.info(f"Setting speaker change threshold to {threshold}")
# Send acknowledgment
await websocket.send(json.dumps({
"type": "config_ack",
"message": "Configuration received",
"timestamp": time.time()
}))
elif message_type == "status_request":
# Send status information
await websocket.send(json.dumps({
"type": "status_response",
"data": self.get_processing_stats(),
"timestamp": time.time()
}))
else:
logger.warning(f"Unknown message type: {message_type}")
except json.JSONDecodeError:
logger.error(f"Invalid JSON received: {message}")
await self.send_error(websocket, "Invalid JSON format")
async def send_error(self, websocket, error_message: str):
"""Send error message to client"""
try:
await websocket.send(json.dumps({
"type": "error",
"message": error_message,
"timestamp": time.time()
}))
except Exception as e:
logger.error(f"Failed to send error message: {e}")
def update_conversation_history(self, transcription_result: Dict[str, Any]):
"""Update conversation history with new transcription"""
history_entry = {
"timestamp": time.time(),
"text": transcription_result.get("text", ""),
"speaker": transcription_result.get("speaker", "Unknown"),
"confidence": transcription_result.get("confidence", 0.0)
}
self.conversation_history.append(history_entry)
# Keep only last 50 entries to prevent memory issues
if len(self.conversation_history) > 50:
self.conversation_history = self.conversation_history[-50:]
def get_processing_stats(self):
"""Get processing statistics"""
return {
"connected_clients": len(self.connected_clients),
"total_audio_chunks": self.processing_stats["total_audio_chunks"],
"total_transcriptions": self.processing_stats["total_transcriptions"],
"last_audio_received": self.processing_stats["last_audio_received"],
"server_uptime": time.time() - self.processing_stats["server_start_time"],
"conversation_entries": len(self.conversation_history),
"backend_url": self.processing_stats.get("backend_url", HF_SPACE_URL)
}
async def start_server(self, host="0.0.0.0", port=7860):
"""Start the WebSocket server"""
try:
# Start WebSocket server on /ws_inference endpoint
self.websocket_server = await websockets.serve(
self.handle_client_connection,
host,
port,
subprotocols=[],
path="/ws_inference"
)
self.is_running = True
logger.info(f"WebSocket server started on ws://{host}:{port}/ws_inference")
# Keep the server running
await self.websocket_server.wait_closed()
except Exception as e:
logger.error(f"Failed to start WebSocket server: {e}")
self.is_running = False
# Initialize the WebSocket server
ws_server = TranscriptionWebSocketServer()
def create_gradio_interface():
"""Create Gradio interface for monitoring and testing"""
def get_server_status():
"""Get current server status"""
stats = ws_server.get_processing_stats()
status_text = f"""
### Server Status
- **WebSocket Server**: {'π’ Running' if ws_server.is_running else 'π΄ Stopped'}
- **Connected Clients**: {stats['connected_clients']}
- **Server Uptime**: {stats['server_uptime']:.1f} seconds
### Processing Statistics
- **Audio Chunks Processed**: {stats['total_audio_chunks']}
- **Transcriptions Generated**: {stats['total_transcriptions']}
- **Last Audio Received**: {time.ctime(stats['last_audio_received']) if stats['last_audio_received'] else 'Never'}
### Conversation
- **History Entries**: {stats['conversation_entries']}
"""
return status_text
def get_recent_transcriptions():
"""Get recent transcription results"""
if not ws_server.conversation_history:
return "No transcriptions yet. Waiting for audio data from backend..."
recent_entries = ws_server.conversation_history[-10:] # Last 10 entries
formatted_text = "### Recent Transcriptions\n\n"
for entry in recent_entries:
timestamp = time.strftime("%H:%M:%S", time.localtime(entry['timestamp']))
speaker = entry['speaker']
text = entry['text']
confidence = entry['confidence']
# Extract speaker number for color matching with shared.py
speaker_num = 0
if speaker.startswith("Speaker_"):
try:
speaker_num = int(speaker.split("_")[1]) - 1
except (ValueError, IndexError):
speaker_num = 0
# Use colors from shared.py if possible
try:
from shared import SPEAKER_COLORS
color = SPEAKER_COLORS[speaker_num % len(SPEAKER_COLORS)]
except (ImportError, IndexError):
# Fallback colors
colors = ["#FF6B6B", "#4ECDC4", "#45B7D1", "#96CEB4", "#FFEAA7", "#DDA0DD", "#98D8C8", "#F7DC6F"]
color = colors[speaker_num % len(colors)]
formatted_text += f"<span style='color:{color};font-weight:bold;'>[{timestamp}] {speaker}</span> (confidence: {confidence:.2f})\n"
formatted_text += f"{text}\n\n"
return formatted_text
def clear_conversation_history():
"""Clear conversation history"""
ws_server.conversation_history.clear()
return "Conversation history cleared!"
# Create Gradio interface
with gr.Blocks(
title="Real-time Audio Transcription Service",
theme=gr.themes.Soft()
) as demo:
gr.Markdown("# π€ Real-time Audio Transcription Service")
gr.Markdown("This HuggingFace Space receives audio from your backend and returns transcription results with speaker diarization.")
with gr.Tab("π Server Status"):
status_display = gr.Markdown(get_server_status())
with gr.Row():
refresh_status_btn = gr.Button("π Refresh Status", variant="primary")
refresh_status_btn.click(
fn=get_server_status,
outputs=status_display,
every=None
)
with gr.Tab("π Live Transcription"):
transcription_display = gr.Markdown(get_recent_transcriptions())
with gr.Row():
refresh_transcription_btn = gr.Button("π Refresh Transcriptions", variant="primary")
clear_history_btn = gr.Button("ποΈ Clear History", variant="secondary")
refresh_transcription_btn.click(
fn=get_recent_transcriptions,
outputs=transcription_display
)
clear_history_btn.click(
fn=clear_conversation_history,
outputs=gr.Markdown()
)
with gr.Tab("π§ Connection Info"):
gr.Markdown(f"""
### WebSocket Connection Details
**WebSocket Endpoint**: `wss://{HF_SPACE_URL}/ws_inference`
### Backend Connection
Your backend should connect to this WebSocket endpoint and:
1. **Send Audio Data**: Stream raw audio bytes to this endpoint
2. **Receive Results**: Get JSON responses with transcription results
### Expected Message Flow
**Backend β HuggingFace**:
- Raw audio bytes (binary data)
- Configuration messages (JSON)
**HuggingFace β Backend**:
```json
{{
"type": "processing_result",
"timestamp": 1234567890.123,
"data": {{
"text": "transcribed text here",
"speaker": "Speaker_1",
"confidence": 0.95
}}
}}
```
### Test Connection
Your backend is configured to connect to: `{ws_server.processing_stats.get('backend_url', HF_SPACE_URL)}`
""")
with gr.Tab("π API Documentation"):
gr.Markdown("""
### WebSocket API Reference
#### Endpoint
- **URL**: `/ws_inference`
- **Protocol**: WebSocket
- **Accepts**: Binary audio data + JSON messages
#### Message Types
##### 1. Audio Processing
- **Input**: Raw audio bytes (binary)
- **Output**: Processing result (JSON)
##### 2. Configuration
- **Input**:
```json
{
"type": "config",
"settings": {
"language": "en",
"enable_diarization": true,
"max_speakers": 4,
"threshold": 0.65
}
}
```
##### 3. Status Check
- **Input**: `{"type": "status_request"}`
- **Output**: Server statistics
##### 4. Ping/Pong
- **Input**: `{"type": "ping"}`
- **Output**: `{"type": "pong", "timestamp": 1234567890}`
#### Error Handling
All errors are returned as:
```json
{
"type": "error",
"message": "Error description",
"timestamp": 1234567890.123
}
```
""")
return demo
def run_websocket_server():
"""Run WebSocket server in background thread"""
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
logger.info("Starting WebSocket server thread...")
loop.run_until_complete(ws_server.start_server())
except Exception as e:
logger.error(f"WebSocket server error: {e}")
finally:
loop.close()
# Mount UI to inference.py
def mount_ui(app):
"""Mount Gradio interface to FastAPI app"""
try:
demo = create_gradio_interface()
# Mount without starting server (FastAPI will handle it)
demo.mount_to_app(app)
logger.info("Gradio UI mounted to FastAPI app")
return True
except Exception as e:
logger.error(f"Error mounting UI: {e}")
return False
# Start WebSocket server in background
logger.info("Initializing WebSocket server...")
websocket_thread = threading.Thread(target=run_websocket_server, daemon=True)
websocket_thread.start()
# Give server time to start
time.sleep(2)
# Create and launch Gradio interface
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
) |