import gradio as gr import numpy as np import queue import torch import time import threading import os import urllib.request import torchaudio from scipy.spatial.distance import cosine import json import asyncio from typing import Iterator import logging # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Simplified configuration parameters SILENCE_THRESHS = [0, 0.4] FINAL_TRANSCRIPTION_MODEL = "distil-large-v3" FINAL_BEAM_SIZE = 5 REALTIME_TRANSCRIPTION_MODEL = "distil-small.en" REALTIME_BEAM_SIZE = 5 TRANSCRIPTION_LANGUAGE = "en" SILERO_SENSITIVITY = 0.4 WEBRTC_SENSITIVITY = 3 MIN_LENGTH_OF_RECORDING = 0.7 PRE_RECORDING_BUFFER_DURATION = 0.35 # Speaker change detection parameters DEFAULT_CHANGE_THRESHOLD = 0.7 EMBEDDING_HISTORY_SIZE = 5 MIN_SEGMENT_DURATION = 1.0 DEFAULT_MAX_SPEAKERS = 4 ABSOLUTE_MAX_SPEAKERS = 10 # Global variables FAST_SENTENCE_END = True SAMPLE_RATE = 16000 BUFFER_SIZE = 1024 CHANNELS = 1 CHUNK_DURATION_MS = 100 # 100ms chunks for FastRTC # Speaker colors SPEAKER_COLORS = [ "#FFFF00", # Yellow "#FF0000", # Red "#00FF00", # Green "#00FFFF", # Cyan "#FF00FF", # Magenta "#0000FF", # Blue "#FF8000", # Orange "#00FF80", # Spring Green "#8000FF", # Purple "#FFFFFF", # White ] SPEAKER_COLOR_NAMES = [ "Yellow", "Red", "Green", "Cyan", "Magenta", "Blue", "Orange", "Spring Green", "Purple", "White" ] class SpeechBrainEncoder: """ECAPA-TDNN encoder from SpeechBrain for speaker embeddings""" def __init__(self, device="cpu"): self.device = device self.model = None self.embedding_dim = 192 self.model_loaded = False self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain") os.makedirs(self.cache_dir, exist_ok=True) def _download_model(self): """Download pre-trained SpeechBrain ECAPA-TDNN model if not present""" model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt" model_path = os.path.join(self.cache_dir, "embedding_model.ckpt") if not os.path.exists(model_path): logger.info(f"Downloading ECAPA-TDNN model to {model_path}...") urllib.request.urlretrieve(model_url, model_path) return model_path def load_model(self): """Load the ECAPA-TDNN model""" try: from speechbrain.pretrained import EncoderClassifier model_path = self._download_model() self.model = EncoderClassifier.from_hparams( source="speechbrain/spkrec-ecapa-voxceleb", savedir=self.cache_dir, run_opts={"device": self.device} ) self.model_loaded = True return True except Exception as e: logger.error(f"Error loading ECAPA-TDNN model: {e}") return False def embed_utterance(self, audio, sr=16000): """Extract speaker embedding from audio""" if not self.model_loaded: raise ValueError("Model not loaded. Call load_model() first.") try: if isinstance(audio, np.ndarray): waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0) else: waveform = audio.unsqueeze(0) if sr != 16000: waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000) with torch.no_grad(): embedding = self.model.encode_batch(waveform) return embedding.squeeze().cpu().numpy() except Exception as e: logger.error(f"Error extracting embedding: {e}") return np.zeros(self.embedding_dim) class AudioProcessor: """Processes audio data to extract speaker embeddings""" def __init__(self, encoder): self.encoder = encoder def extract_embedding(self, audio_float): try: # Ensure audio is in the right format if np.abs(audio_float).max() > 1.0: audio_float = audio_float / np.abs(audio_float).max() embedding = self.encoder.embed_utterance(audio_float) return embedding except Exception as e: logger.error(f"Embedding extraction error: {e}") return np.zeros(self.encoder.embedding_dim) class SpeakerChangeDetector: """Speaker change detector that supports a configurable number of speakers""" def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS): self.embedding_dim = embedding_dim self.change_threshold = change_threshold self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS) self.current_speaker = 0 self.previous_embeddings = [] self.last_change_time = time.time() self.mean_embeddings = [None] * self.max_speakers self.speaker_embeddings = [[] for _ in range(self.max_speakers)] self.last_similarity = 0.0 self.active_speakers = set([0]) def set_max_speakers(self, max_speakers): """Update the maximum number of speakers""" new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS) if new_max < self.max_speakers: for speaker_id in list(self.active_speakers): if speaker_id >= new_max: self.active_speakers.discard(speaker_id) if self.current_speaker >= new_max: self.current_speaker = 0 if new_max > self.max_speakers: self.mean_embeddings.extend([None] * (new_max - self.max_speakers)) self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)]) else: self.mean_embeddings = self.mean_embeddings[:new_max] self.speaker_embeddings = self.speaker_embeddings[:new_max] self.max_speakers = new_max def set_change_threshold(self, threshold): """Update the threshold for detecting speaker changes""" self.change_threshold = max(0.1, min(threshold, 0.99)) def add_embedding(self, embedding, timestamp=None): """Add a new embedding and check if there's a speaker change""" current_time = timestamp or time.time() if not self.previous_embeddings: self.previous_embeddings.append(embedding) self.speaker_embeddings[self.current_speaker].append(embedding) if self.mean_embeddings[self.current_speaker] is None: self.mean_embeddings[self.current_speaker] = embedding.copy() return self.current_speaker, 1.0 current_mean = self.mean_embeddings[self.current_speaker] if current_mean is not None: similarity = 1.0 - cosine(embedding, current_mean) else: similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1]) self.last_similarity = similarity time_since_last_change = current_time - self.last_change_time is_speaker_change = False if time_since_last_change >= MIN_SEGMENT_DURATION: if similarity < self.change_threshold: best_speaker = self.current_speaker best_similarity = similarity for speaker_id in range(self.max_speakers): if speaker_id == self.current_speaker: continue speaker_mean = self.mean_embeddings[speaker_id] if speaker_mean is not None: speaker_similarity = 1.0 - cosine(embedding, speaker_mean) if speaker_similarity > best_similarity: best_similarity = speaker_similarity best_speaker = speaker_id if best_speaker != self.current_speaker: is_speaker_change = True self.current_speaker = best_speaker elif len(self.active_speakers) < self.max_speakers: for new_id in range(self.max_speakers): if new_id not in self.active_speakers: is_speaker_change = True self.current_speaker = new_id self.active_speakers.add(new_id) break if is_speaker_change: self.last_change_time = current_time self.previous_embeddings.append(embedding) if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE: self.previous_embeddings.pop(0) self.speaker_embeddings[self.current_speaker].append(embedding) self.active_speakers.add(self.current_speaker) if len(self.speaker_embeddings[self.current_speaker]) > 30: self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:] if self.speaker_embeddings[self.current_speaker]: self.mean_embeddings[self.current_speaker] = np.mean( self.speaker_embeddings[self.current_speaker], axis=0 ) return self.current_speaker, similarity def get_color_for_speaker(self, speaker_id): """Return color for speaker ID""" if 0 <= speaker_id < len(SPEAKER_COLORS): return SPEAKER_COLORS[speaker_id] return "#FFFFFF" def get_status_info(self): """Return status information about the speaker change detector""" speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)] return { "current_speaker": self.current_speaker, "speaker_counts": speaker_counts, "active_speakers": len(self.active_speakers), "max_speakers": self.max_speakers, "last_similarity": self.last_similarity, "threshold": self.change_threshold } class WhisperTranscriber: """Whisper transcriber using transformers with FastRTC optimization""" def __init__(self, model_name="distil-large-v3"): self.model = None self.processor = None self.model_name = model_name self.model_loaded = False def load_model(self): """Load Whisper model""" try: from transformers import WhisperProcessor, WhisperForConditionalGeneration model_id = f"distil-whisper/distil-{self.model_name}" if "distil" in self.model_name else f"openai/whisper-{self.model_name}" self.processor = WhisperProcessor.from_pretrained(model_id) self.model = WhisperForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, low_cpu_mem_usage=True, use_safetensors=True ) if torch.cuda.is_available(): self.model = self.model.cuda() self.model_loaded = True return True except Exception as e: logger.error(f"Error loading Whisper model: {e}") return False def transcribe(self, audio_array, sample_rate=16000): """Transcribe audio array""" if not self.model_loaded: return "" try: # Ensure audio is the right length and format if len(audio_array) < 1600: # Less than 0.1 seconds return "" # Resample if needed if sample_rate != 16000: import torchaudio.functional as F audio_tensor = torch.tensor(audio_array, dtype=torch.float32) audio_array = F.resample(audio_tensor, sample_rate, 16000).numpy() # Process with Whisper inputs = self.processor( audio_array, sampling_rate=16000, return_tensors="pt", truncation=False, padding=True ) if torch.cuda.is_available(): inputs = {k: v.cuda() for k, v in inputs.items()} with torch.no_grad(): predicted_ids = self.model.generate( inputs["input_features"], max_length=448, num_beams=1, do_sample=False, use_cache=True ) transcription = self.processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] return transcription.strip() except Exception as e: logger.error(f"Transcription error: {e}") return "" class FastRTCSpeakerDiarization: def __init__(self): self.encoder = None self.audio_processor = None self.speaker_detector = None self.transcriber = None self.audio_queue = queue.Queue(maxsize=100) self.processing_thread = None self.full_sentences = [] self.sentence_speakers = [] self.is_running = False self.change_threshold = DEFAULT_CHANGE_THRESHOLD self.max_speakers = DEFAULT_MAX_SPEAKERS self.audio_buffer = [] self.buffer_duration = 3.0 # seconds self.last_transcription_time = time.time() self.chunk_size = int(SAMPLE_RATE * CHUNK_DURATION_MS / 1000) def initialize_models(self): """Initialize the speaker encoder and transcription models""" try: device_str = "cuda" if torch.cuda.is_available() else "cpu" logger.info(f"Using device: {device_str}") # Initialize speaker encoder self.encoder = SpeechBrainEncoder(device=device_str) encoder_success = self.encoder.load_model() # Initialize transcriber self.transcriber = WhisperTranscriber(FINAL_TRANSCRIPTION_MODEL) transcriber_success = self.transcriber.load_model() if encoder_success and transcriber_success: self.audio_processor = AudioProcessor(self.encoder) self.speaker_detector = SpeakerChangeDetector( embedding_dim=self.encoder.embedding_dim, change_threshold=self.change_threshold, max_speakers=self.max_speakers ) logger.info("Models loaded successfully!") return True else: logger.error("Failed to load models") return False except Exception as e: logger.error(f"Model initialization error: {e}") return False def process_audio_chunk(self, audio_chunk: np.ndarray, sample_rate: int): """Process individual audio chunk from FastRTC""" if not self.is_running or audio_chunk is None: return try: # Ensure audio chunk is in correct format if isinstance(audio_chunk, np.ndarray): # Ensure mono audio if len(audio_chunk.shape) > 1: audio_chunk = audio_chunk.mean(axis=1) # Normalize audio if audio_chunk.dtype != np.float32: audio_chunk = audio_chunk.astype(np.float32) if np.abs(audio_chunk).max() > 1.0: audio_chunk = audio_chunk / np.abs(audio_chunk).max() # Add to buffer self.audio_buffer.extend(audio_chunk) # Keep buffer to specified duration max_buffer_length = int(self.buffer_duration * sample_rate) if len(self.audio_buffer) > max_buffer_length: self.audio_buffer = self.audio_buffer[-max_buffer_length:] # Process if enough audio accumulated and enough time passed current_time = time.time() if (current_time - self.last_transcription_time > 1.5 and len(self.audio_buffer) > sample_rate * 0.8): # At least 0.8 seconds if not self.audio_queue.full(): self.audio_queue.put((np.array(self.audio_buffer[-int(sample_rate * 2):]), sample_rate)) self.last_transcription_time = current_time except Exception as e: logger.error(f"Audio chunk processing error: {e}") def process_audio_queue(self): """Process audio from the queue""" while self.is_running: try: audio_data, sample_rate = self.audio_queue.get(timeout=1) if len(audio_data) < 1600: # Skip very short audio continue # Transcribe audio transcription = self.transcriber.transcribe(audio_data, sample_rate) if transcription and len(transcription.strip()) > 0: # Extract speaker embedding speaker_embedding = self.audio_processor.extract_embedding(audio_data) # Detect speaker speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding) # Store results self.full_sentences.append(transcription.strip()) self.sentence_speakers.append(speaker_id) logger.info(f"Processed: Speaker {speaker_id + 1}: {transcription.strip()[:50]}...") except queue.Empty: continue except Exception as e: logger.error(f"Error processing audio queue: {e}") def start_recording(self): """Start the recording and processing""" if self.encoder is None or self.transcriber is None: return "Please initialize models first!" try: self.is_running = True self.audio_buffer = [] self.last_transcription_time = time.time() # Clear the queue while not self.audio_queue.empty(): try: self.audio_queue.get_nowait() except queue.Empty: break # Start processing thread self.processing_thread = threading.Thread(target=self.process_audio_queue, daemon=True) self.processing_thread.start() logger.info("Recording started successfully!") return "Recording started successfully!" except Exception as e: logger.error(f"Error starting recording: {e}") return f"Error starting recording: {e}" def stop_recording(self): """Stop the recording process""" self.is_running = False logger.info("Recording stopped!") return "Recording stopped!" def clear_conversation(self): """Clear all conversation data""" self.full_sentences = [] self.sentence_speakers = [] self.audio_buffer = [] # Clear the queue while not self.audio_queue.empty(): try: self.audio_queue.get_nowait() except queue.Empty: break if self.speaker_detector: self.speaker_detector = SpeakerChangeDetector( embedding_dim=self.encoder.embedding_dim, change_threshold=self.change_threshold, max_speakers=self.max_speakers ) return "Conversation cleared!" def update_settings(self, threshold, max_speakers): """Update speaker detection settings""" self.change_threshold = threshold self.max_speakers = max_speakers if self.speaker_detector: self.speaker_detector.set_change_threshold(threshold) self.speaker_detector.set_max_speakers(max_speakers) return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}" def get_formatted_conversation(self): """Get the formatted conversation with speaker colors""" try: if not self.full_sentences: return "Waiting for speech input... 🎤" sentences_with_style = [] for i, sentence in enumerate(self.full_sentences[-10:]): # Show last 10 sentences if i >= len(self.sentence_speakers): color = "#FFFFFF" speaker_name = "Unknown" else: speaker_id = self.sentence_speakers[-(10-i) if len(self.sentence_speakers) >= 10 else i] color = self.speaker_detector.get_color_for_speaker(speaker_id) speaker_name = f"Speaker {speaker_id + 1}" sentences_with_style.append( f'

{speaker_name}: {sentence}

') return "".join(sentences_with_style) except Exception as e: return f"Error formatting conversation: {e}" def get_status_info(self): """Get current status information""" if not self.speaker_detector: return "Speaker detector not initialized" try: status = self.speaker_detector.get_status_info() queue_size = self.audio_queue.qsize() status_lines = [ f"**Current Speaker:** {status['current_speaker'] + 1}", f"**Active Speakers:** {status['active_speakers']} of {status['max_speakers']}", f"**Last Similarity:** {status['last_similarity']:.3f}", f"**Change Threshold:** {status['threshold']:.2f}", f"**Total Sentences:** {len(self.full_sentences)}", f"**Buffer Length:** {len(self.audio_buffer)} samples", f"**Queue Size:** {queue_size}", "", "**Speaker Segment Counts:**" ] for i in range(status['max_speakers']): color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}" status_lines.append(f"Speaker {i+1} ({color_name}): {status['speaker_counts'][i]}") return "\n".join(status_lines) except Exception as e: return f"Error getting status: {e}" # Global instance diarization_system = FastRTCSpeakerDiarization() def initialize_system(): """Initialize the diarization system""" success = diarization_system.initialize_models() if success: return "✅ System initialized successfully! Models loaded." else: return "❌ Failed to initialize system. Please check the logs." def start_recording(): """Start recording and transcription""" return diarization_system.start_recording() def stop_recording(): """Stop recording and transcription""" return diarization_system.stop_recording() def clear_conversation(): """Clear the conversation""" return diarization_system.clear_conversation() def update_settings(threshold, max_speakers): """Update system settings""" return diarization_system.update_settings(threshold, max_speakers) def get_conversation(): """Get the current conversation""" return diarization_system.get_formatted_conversation() def get_status(): """Get system status""" return diarization_system.get_status_info() def process_audio_stream(audio_stream): """Process streaming audio from FastRTC""" if audio_stream is not None and diarization_system.is_running: sample_rate, audio_data = audio_stream diarization_system.process_audio_chunk(audio_data, sample_rate) return get_conversation(), get_status() # Create Gradio interface with FastRTC def create_interface(): with gr.Blocks(title="FastRTC Real-time Speaker Diarization", theme=gr.themes.Soft()) as app: gr.Markdown("# 🎤 FastRTC Real-time Speech Recognition with Speaker Diarization") gr.Markdown("This app uses Hugging Face FastRTC for real-time audio streaming with automatic speaker identification and color-coding.") with gr.Row(): with gr.Column(scale=2): # FastRTC Audio input for real-time streaming audio_input = gr.Audio( sources=["microphone"], type="numpy", streaming=True, label="đŸŽ™ī¸ FastRTC Microphone Input", format="wav", show_download_button=False, container=True, elem_id="fastrtc_audio" ) # Main conversation display conversation_output = gr.HTML( value="Click 'Initialize System' and then 'Start Recording' to begin...", label="Live Conversation", elem_id="conversation_display" ) # Control buttons with gr.Row(): init_btn = gr.Button("🔧 Initialize System", variant="secondary", size="lg") start_btn = gr.Button("đŸŽ™ī¸ Start Recording", variant="primary", interactive=False, size="lg") stop_btn = gr.Button("âšī¸ Stop Recording", variant="stop", interactive=False, size="lg") clear_btn = gr.Button("đŸ—‘ī¸ Clear", interactive=False, size="lg") # Status display status_output = gr.Textbox( label="System Status", value="System not initialized", lines=10, interactive=False, show_copy_button=True ) with gr.Column(scale=1): # Settings panel gr.Markdown("## âš™ī¸ Settings") threshold_slider = gr.Slider( minimum=0.1, maximum=0.95, step=0.05, value=DEFAULT_CHANGE_THRESHOLD, label="Speaker Change Sensitivity", info="Lower = more sensitive to changes" ) max_speakers_slider = gr.Slider( minimum=2, maximum=ABSOLUTE_MAX_SPEAKERS, step=1, value=DEFAULT_MAX_SPEAKERS, label="Maximum Number of Speakers" ) update_settings_btn = gr.Button("Update Settings", variant="secondary") # Speaker color legend gr.Markdown("## 🎨 Speaker Colors") color_info = [] for i, (color, name) in enumerate(zip(SPEAKER_COLORS, SPEAKER_COLOR_NAMES)): color_info.append(f'● Speaker {i+1} ({name})') gr.HTML("
".join(color_info[:DEFAULT_MAX_SPEAKERS])) # Performance info gr.Markdown("## 📊 Performance") gr.Markdown(""" - **FastRTC**: Low-latency audio streaming - **Whisper**: distil-large-v3 for transcription - **ECAPA-TDNN**: Speaker embeddings - **Real-time**: ~100ms processing chunks """) # Event handlers def on_initialize(): result = initialize_system() if "successfully" in result: return ( result, # status_output gr.update(interactive=True), # start_btn gr.update(interactive=True), # clear_btn get_conversation(), # conversation_output get_status() # status_output update ) else: return ( result, # status_output gr.update(interactive=False), # start_btn gr.update(interactive=False), # clear_btn get_conversation(), # conversation_output get_status() # status_output update ) def on_start(): result = start_recording() return ( result, # status_output gr.update(interactive=False), # start_btn gr.update(interactive=True), # stop_btn ) def on_stop(): result = stop_recording() return ( result, # status_output gr.update(interactive=True), # start_btn gr.update(interactive=False), # stop_btn ) # Auto-refresh function def refresh_display(): return get_conversation(), get_status() # Connect event handlers init_btn.click( on_initialize, outputs=[status_output, start_btn, clear_btn, conversation_output, status_output] ) start_btn.click( on_start, outputs=[status_output, start_btn, stop_btn] ) stop_btn.click( on_stop, outputs=[status_output, start_btn, stop_btn] ) clear_btn.click( clear_conversation, outputs=[status_output] ) update_settings_btn.click( update_settings, inputs=[threshold_slider, max_speakers_slider], outputs=[status_output] ) # FastRTC streaming audio processing audio_input.stream( process_audio_stream, inputs=[audio_input], outputs=[conversation_output, status_output], stream_every=0.1, # Process every 100ms time_limit=None ) # Auto-refresh timer refresh_timer = gr.Timer(2.0) refresh_timer.tick( refresh_display, outputs=[conversation_output, status_output] ) return app if __name__ == "__main__": app = create_interface() app.launch( server_name="0.0.0.0", server_port=7860, share=True )