Spaces:
Sleeping
Sleeping
Commit
Β·
7609dee
1
Parent(s):
1a722f5
Removed soundcard as it doesn't support hugging space
Browse files- realtime_diarize.py +507 -449
realtime_diarize.py
CHANGED
@@ -1,523 +1,581 @@
|
|
1 |
-
import
|
2 |
-
import sys
|
3 |
-
import time
|
4 |
-
import queue
|
5 |
-
import threading
|
6 |
-
import signal
|
7 |
-
import atexit
|
8 |
-
from contextlib import contextmanager
|
9 |
-
import warnings
|
10 |
-
warnings.filterwarnings("ignore", category=UserWarning)
|
11 |
-
|
12 |
import numpy as np
|
|
|
13 |
import torch
|
|
|
|
|
|
|
|
|
14 |
import torchaudio
|
15 |
from scipy.spatial.distance import cosine
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
CHANNELS = 1
|
35 |
-
|
36 |
-
# Transcription settings
|
37 |
-
FINAL_MODEL = "distil-large-v3"
|
38 |
-
REALTIME_MODEL = "distil-small.en"
|
39 |
-
LANGUAGE = "en"
|
40 |
-
BEAM_SIZE = 5
|
41 |
-
REALTIME_BEAM_SIZE = 3
|
42 |
-
|
43 |
-
# Voice activity detection
|
44 |
-
SILENCE_THRESHOLD = 0.4
|
45 |
-
MIN_RECORDING_LENGTH = 0.5
|
46 |
-
PRE_RECORDING_BUFFER = 0.2
|
47 |
-
SILERO_SENSITIVITY = 0.4
|
48 |
-
WEBRTC_SENSITIVITY = 3
|
49 |
-
|
50 |
-
# Speaker detection
|
51 |
-
CHANGE_THRESHOLD = 0.65
|
52 |
-
MAX_SPEAKERS = 4
|
53 |
-
MIN_SEGMENT_DURATION = 1.0
|
54 |
-
EMBEDDING_HISTORY_SIZE = 3
|
55 |
-
SPEAKER_MEMORY_SIZE = 20
|
56 |
|
57 |
-
#
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
67 |
]
|
68 |
-
RESET = '\033[0m'
|
69 |
-
LIVE_COLOR = '\033[90m'
|
70 |
|
71 |
-
|
72 |
-
"""
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
def __init__(self, device="cpu"):
|
75 |
self.device = device
|
76 |
-
self.
|
|
|
77 |
self.model_loaded = False
|
78 |
-
self.
|
|
|
79 |
|
80 |
-
def
|
81 |
-
"""
|
82 |
try:
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
88 |
self.model_loaded = True
|
89 |
-
print("
|
|
|
90 |
except Exception as e:
|
91 |
-
print(f"
|
92 |
-
|
93 |
|
94 |
-
def
|
95 |
"""Extract speaker embedding from audio"""
|
96 |
if not self.model_loaded:
|
97 |
-
|
98 |
|
99 |
try:
|
100 |
-
# Ensure audio is float32 and normalized
|
101 |
if isinstance(audio, np.ndarray):
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
if audio.abs().max() > 0:
|
106 |
-
audio = audio / audio.abs().max()
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
audio = audio.unsqueeze(0)
|
111 |
|
112 |
-
# Extract MFCC features
|
113 |
with torch.no_grad():
|
114 |
-
|
115 |
-
# Simple statistics-based embedding
|
116 |
-
embedding = torch.cat([
|
117 |
-
mfcc.mean(dim=2).flatten(),
|
118 |
-
mfcc.std(dim=2).flatten(),
|
119 |
-
mfcc.max(dim=2)[0].flatten(),
|
120 |
-
mfcc.min(dim=2)[0].flatten()
|
121 |
-
])
|
122 |
|
123 |
-
|
124 |
-
if embedding.size(0) > self.embedding_dim:
|
125 |
-
embedding = embedding[:self.embedding_dim]
|
126 |
-
elif embedding.size(0) < self.embedding_dim:
|
127 |
-
padding = torch.zeros(self.embedding_dim - embedding.size(0))
|
128 |
-
embedding = torch.cat([embedding, padding])
|
129 |
-
|
130 |
-
return embedding.cpu().numpy()
|
131 |
-
|
132 |
except Exception as e:
|
133 |
print(f"Error extracting embedding: {e}")
|
134 |
return np.zeros(self.embedding_dim)
|
135 |
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
138 |
|
139 |
-
def
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
self.current_speaker = 0
|
143 |
-
self.
|
144 |
-
self.speaker_centroids = [None] * max_speakers
|
145 |
self.last_change_time = time.time()
|
146 |
-
self.
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
current_centroid = self.speaker_centroids[self.current_speaker]
|
160 |
-
if current_centroid is not None:
|
161 |
-
similarity = 1.0 - cosine(embedding, current_centroid)
|
162 |
-
else:
|
163 |
-
similarity = 0.0
|
164 |
-
|
165 |
-
# Check if enough time has passed for a speaker change
|
166 |
-
if current_time - self.last_change_time < Config.MIN_SEGMENT_DURATION:
|
167 |
-
self._update_speaker_model(self.current_speaker, embedding)
|
168 |
-
return self.current_speaker, similarity
|
169 |
-
|
170 |
-
# Check for speaker change
|
171 |
-
if similarity < self.threshold:
|
172 |
-
# Find best matching existing speaker
|
173 |
-
best_speaker = self.current_speaker
|
174 |
-
best_similarity = similarity
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
self.current_speaker =
|
200 |
-
self.last_change_time = current_time
|
201 |
-
similarity = best_similarity
|
202 |
-
|
203 |
-
# Update speaker model
|
204 |
-
self._update_speaker_model(self.current_speaker, embedding)
|
205 |
-
return self.current_speaker, similarity
|
206 |
-
|
207 |
-
def _update_speaker_model(self, speaker_id, embedding):
|
208 |
-
"""Update speaker model with new embedding"""
|
209 |
-
self.speaker_embeddings[speaker_id].append(embedding)
|
210 |
-
|
211 |
-
# Keep only recent embeddings
|
212 |
-
if len(self.speaker_embeddings[speaker_id]) > Config.SPEAKER_MEMORY_SIZE:
|
213 |
-
self.speaker_embeddings[speaker_id] = \
|
214 |
-
self.speaker_embeddings[speaker_id][-Config.SPEAKER_MEMORY_SIZE:]
|
215 |
-
|
216 |
-
# Update centroid
|
217 |
-
if self.speaker_embeddings[speaker_id]:
|
218 |
-
self.speaker_centroids[speaker_id] = np.mean(
|
219 |
-
self.speaker_embeddings[speaker_id], axis=0
|
220 |
)
|
221 |
-
|
222 |
-
|
223 |
-
"""Handles audio recording from system audio"""
|
224 |
-
|
225 |
-
def __init__(self, audio_queue):
|
226 |
-
self.audio_queue = audio_queue
|
227 |
-
self.running = False
|
228 |
-
self.thread = None
|
229 |
-
|
230 |
-
def start(self):
|
231 |
-
"""Start recording"""
|
232 |
-
self.running = True
|
233 |
-
self.thread = threading.Thread(target=self._record_loop, daemon=True)
|
234 |
-
self.thread.start()
|
235 |
-
print("Audio recording started")
|
236 |
|
237 |
-
def
|
238 |
-
"""
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
|
243 |
-
def
|
244 |
-
"""
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
while self.running:
|
256 |
-
data = recorder.record(numframes=Config.BUFFER_SIZE)
|
257 |
-
if data is not None and len(data) > 0:
|
258 |
-
# Convert to mono if needed
|
259 |
-
if data.ndim > 1:
|
260 |
-
data = data[:, 0]
|
261 |
-
self.audio_queue.put(data.flatten())
|
262 |
-
|
263 |
-
except Exception as e:
|
264 |
-
print(f"Loopback recording failed: {e}")
|
265 |
-
print("Falling back to microphone...")
|
266 |
-
|
267 |
-
# Fallback to microphone
|
268 |
-
mic = sc.default_microphone()
|
269 |
-
with mic.recorder(
|
270 |
-
samplerate=Config.SAMPLE_RATE,
|
271 |
-
blocksize=Config.BUFFER_SIZE,
|
272 |
-
channels=Config.CHANNELS
|
273 |
-
) as recorder:
|
274 |
-
print(f"Recording from microphone: {mic.name}")
|
275 |
-
while self.running:
|
276 |
-
data = recorder.record(numframes=Config.BUFFER_SIZE)
|
277 |
-
if data is not None and len(data) > 0:
|
278 |
-
if data.ndim > 1:
|
279 |
-
data = data[:, 0]
|
280 |
-
self.audio_queue.put(data.flatten())
|
281 |
-
|
282 |
-
except Exception as e:
|
283 |
-
print(f"Recording error: {e}")
|
284 |
-
self.running = False
|
285 |
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
def __init__(self):
|
290 |
-
self.encoder =
|
291 |
-
self.
|
292 |
-
self.
|
293 |
-
self.
|
294 |
-
self.
|
295 |
-
self.
|
296 |
-
self.
|
297 |
-
|
298 |
-
|
299 |
-
|
|
|
300 |
try:
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
|
|
319 |
except Exception as e:
|
320 |
-
print(f"
|
321 |
return False
|
322 |
|
323 |
-
def
|
324 |
-
"""
|
325 |
-
if not self.
|
326 |
-
return
|
327 |
-
|
328 |
-
self.running = True
|
329 |
|
330 |
-
|
331 |
-
|
332 |
|
333 |
-
|
334 |
-
|
335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
337 |
-
|
338 |
-
|
|
|
|
|
|
|
|
|
339 |
|
340 |
-
return
|
341 |
|
342 |
-
def
|
343 |
-
"""
|
344 |
-
|
345 |
-
self.
|
|
|
|
|
|
|
|
|
346 |
|
347 |
-
|
348 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
|
350 |
-
|
351 |
-
self.processing_thread.join(timeout=2)
|
352 |
|
353 |
-
|
354 |
-
|
355 |
-
self.
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
while self.running:
|
364 |
-
try:
|
365 |
-
# Get audio chunk
|
366 |
-
chunk = self.audio_queue.get(timeout=0.1)
|
367 |
-
audio_buffer.extend(chunk)
|
368 |
-
|
369 |
-
# Process when we have enough audio (about 1 second)
|
370 |
-
if len(audio_buffer) >= Config.SAMPLE_RATE:
|
371 |
-
audio_array = np.array(audio_buffer[:Config.SAMPLE_RATE])
|
372 |
-
audio_buffer = audio_buffer[Config.SAMPLE_RATE//2:] # 50% overlap
|
373 |
-
|
374 |
-
# Convert to int16 for recorder
|
375 |
-
audio_int16 = (audio_array * 32767).astype(np.int16)
|
376 |
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
if self.running:
|
385 |
-
print(f"Audio processing error: {e}")
|
386 |
-
|
387 |
-
def _start_transcription(self):
|
388 |
-
"""Start transcription loop"""
|
389 |
-
def transcription_loop():
|
390 |
-
while self.running:
|
391 |
-
try:
|
392 |
-
text = self.recorder.text()
|
393 |
-
if text and text.strip():
|
394 |
-
self._process_final_text(text)
|
395 |
-
except Exception as e:
|
396 |
-
if self.running:
|
397 |
-
print(f"Transcription error: {e}")
|
398 |
-
break
|
399 |
-
|
400 |
-
transcription_thread = threading.Thread(target=transcription_loop, daemon=True)
|
401 |
-
transcription_thread.start()
|
402 |
-
|
403 |
-
def _on_live_text(self, text):
|
404 |
-
"""Handle live transcription updates"""
|
405 |
-
if text and text.strip():
|
406 |
-
print(f"\r{LIVE_COLOR}[Live] {text}{RESET}", end="", flush=True)
|
407 |
|
408 |
-
def
|
409 |
-
"""
|
410 |
-
|
411 |
-
|
412 |
|
413 |
try:
|
414 |
-
|
415 |
-
recent_audio = []
|
416 |
-
temp_queue = []
|
417 |
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
|
|
426 |
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
self.audio_queue.put_nowait(chunk)
|
431 |
-
except queue.Full:
|
432 |
-
break
|
433 |
|
434 |
-
|
435 |
-
if recent_audio:
|
436 |
-
audio_tensor = torch.FloatTensor(recent_audio[-Config.SAMPLE_RATE:])
|
437 |
-
embedding = self.encoder.extract_embedding(audio_tensor)
|
438 |
-
speaker_id, similarity = self.detector.detect_speaker(embedding)
|
439 |
-
else:
|
440 |
-
speaker_id, similarity = 0, 1.0
|
441 |
-
|
442 |
-
# Display with speaker color
|
443 |
-
color = COLORS[speaker_id % len(COLORS)]
|
444 |
-
print(f"{color}Speaker {speaker_id + 1}: {text}{RESET}")
|
445 |
|
446 |
except Exception as e:
|
447 |
-
|
448 |
-
print(f"Text: {text}")
|
449 |
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
477 |
|
478 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
479 |
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
pass
|
492 |
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
return
|
499 |
-
|
500 |
-
self.running = False
|
501 |
|
502 |
-
|
503 |
-
|
|
|
|
|
504 |
|
505 |
-
|
|
|
|
|
|
|
|
|
506 |
|
507 |
-
|
508 |
-
"""Cleanup resources"""
|
509 |
-
self.stop()
|
510 |
|
511 |
-
def main():
|
512 |
-
"""Main entry point"""
|
513 |
-
app = RealTimeSpeakerDetection()
|
514 |
-
|
515 |
-
try:
|
516 |
-
app.start()
|
517 |
-
except Exception as e:
|
518 |
-
print(f"Application error: {e}")
|
519 |
-
finally:
|
520 |
-
app.cleanup()
|
521 |
|
522 |
if __name__ == "__main__":
|
523 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import numpy as np
|
3 |
+
import queue
|
4 |
import torch
|
5 |
+
import time
|
6 |
+
import threading
|
7 |
+
import os
|
8 |
+
import urllib.request
|
9 |
import torchaudio
|
10 |
from scipy.spatial.distance import cosine
|
11 |
+
import json
|
12 |
+
import io
|
13 |
+
import wave
|
14 |
|
15 |
+
# Simplified configuration parameters
|
16 |
+
SILENCE_THRESHS = [0, 0.4]
|
17 |
+
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
|
18 |
+
FINAL_BEAM_SIZE = 5
|
19 |
+
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
|
20 |
+
REALTIME_BEAM_SIZE = 5
|
21 |
+
TRANSCRIPTION_LANGUAGE = "en"
|
22 |
+
SILERO_SENSITIVITY = 0.4
|
23 |
+
WEBRTC_SENSITIVITY = 3
|
24 |
+
MIN_LENGTH_OF_RECORDING = 0.7
|
25 |
+
PRE_RECORDING_BUFFER_DURATION = 0.35
|
26 |
|
27 |
+
# Speaker change detection parameters
|
28 |
+
DEFAULT_CHANGE_THRESHOLD = 0.7
|
29 |
+
EMBEDDING_HISTORY_SIZE = 5
|
30 |
+
MIN_SEGMENT_DURATION = 1.0
|
31 |
+
DEFAULT_MAX_SPEAKERS = 4
|
32 |
+
ABSOLUTE_MAX_SPEAKERS = 10
|
33 |
|
34 |
+
# Global variables
|
35 |
+
FAST_SENTENCE_END = True
|
36 |
+
SAMPLE_RATE = 16000
|
37 |
+
BUFFER_SIZE = 512
|
38 |
+
CHANNELS = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
# Speaker colors
|
41 |
+
SPEAKER_COLORS = [
|
42 |
+
"#FFFF00", # Yellow
|
43 |
+
"#FF0000", # Red
|
44 |
+
"#00FF00", # Green
|
45 |
+
"#00FFFF", # Cyan
|
46 |
+
"#FF00FF", # Magenta
|
47 |
+
"#0000FF", # Blue
|
48 |
+
"#FF8000", # Orange
|
49 |
+
"#00FF80", # Spring Green
|
50 |
+
"#8000FF", # Purple
|
51 |
+
"#FFFFFF", # White
|
52 |
]
|
|
|
|
|
53 |
|
54 |
+
SPEAKER_COLOR_NAMES = [
|
55 |
+
"Yellow", "Red", "Green", "Cyan", "Magenta",
|
56 |
+
"Blue", "Orange", "Spring Green", "Purple", "White"
|
57 |
+
]
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
class SpeechBrainEncoder:
|
64 |
+
"""ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
|
65 |
def __init__(self, device="cpu"):
|
66 |
self.device = device
|
67 |
+
self.model = None
|
68 |
+
self.embedding_dim = 192
|
69 |
self.model_loaded = False
|
70 |
+
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
|
71 |
+
os.makedirs(self.cache_dir, exist_ok=True)
|
72 |
|
73 |
+
def load_model(self):
|
74 |
+
"""Load the ECAPA-TDNN model"""
|
75 |
try:
|
76 |
+
from speechbrain.pretrained import EncoderClassifier
|
77 |
+
|
78 |
+
self.model = EncoderClassifier.from_hparams(
|
79 |
+
source="speechbrain/spkrec-ecapa-voxceleb",
|
80 |
+
savedir=self.cache_dir,
|
81 |
+
run_opts={"device": self.device}
|
82 |
+
)
|
83 |
+
|
84 |
self.model_loaded = True
|
85 |
+
print("ECAPA-TDNN model loaded successfully!")
|
86 |
+
return True
|
87 |
except Exception as e:
|
88 |
+
print(f"SpeechBrain not available: {e}")
|
89 |
+
return False
|
90 |
|
91 |
+
def embed_utterance(self, audio, sr=16000):
|
92 |
"""Extract speaker embedding from audio"""
|
93 |
if not self.model_loaded:
|
94 |
+
raise ValueError("Model not loaded. Call load_model() first.")
|
95 |
|
96 |
try:
|
|
|
97 |
if isinstance(audio, np.ndarray):
|
98 |
+
waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0)
|
99 |
+
else:
|
100 |
+
waveform = audio.unsqueeze(0)
|
|
|
|
|
101 |
|
102 |
+
if sr != 16000:
|
103 |
+
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
|
|
|
104 |
|
|
|
105 |
with torch.no_grad():
|
106 |
+
embedding = self.model.encode_batch(waveform)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
+
return embedding.squeeze().cpu().numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
except Exception as e:
|
110 |
print(f"Error extracting embedding: {e}")
|
111 |
return np.zeros(self.embedding_dim)
|
112 |
|
113 |
+
|
114 |
+
class AudioProcessor:
|
115 |
+
"""Processes audio data to extract speaker embeddings"""
|
116 |
+
def __init__(self, encoder):
|
117 |
+
self.encoder = encoder
|
118 |
|
119 |
+
def extract_embedding(self, audio_data, sample_rate=16000):
|
120 |
+
try:
|
121 |
+
# Ensure audio is float32 and normalized
|
122 |
+
if audio_data.dtype == np.int16:
|
123 |
+
float_audio = audio_data.astype(np.float32) / 32768.0
|
124 |
+
else:
|
125 |
+
float_audio = audio_data.astype(np.float32)
|
126 |
+
|
127 |
+
# Normalize if needed
|
128 |
+
if np.abs(float_audio).max() > 1.0:
|
129 |
+
float_audio = float_audio / np.abs(float_audio).max()
|
130 |
+
|
131 |
+
embedding = self.encoder.embed_utterance(float_audio, sample_rate)
|
132 |
+
return embedding
|
133 |
+
|
134 |
+
except Exception as e:
|
135 |
+
print(f"Embedding extraction error: {e}")
|
136 |
+
return np.zeros(self.encoder.embedding_dim)
|
137 |
+
|
138 |
+
|
139 |
+
class SpeakerChangeDetector:
|
140 |
+
"""Speaker change detector that supports a configurable number of speakers"""
|
141 |
+
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
|
142 |
+
self.embedding_dim = embedding_dim
|
143 |
+
self.change_threshold = change_threshold
|
144 |
+
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
|
145 |
self.current_speaker = 0
|
146 |
+
self.previous_embeddings = []
|
|
|
147 |
self.last_change_time = time.time()
|
148 |
+
self.mean_embeddings = [None] * self.max_speakers
|
149 |
+
self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
|
150 |
+
self.last_similarity = 0.0
|
151 |
+
self.active_speakers = set([0])
|
152 |
+
|
153 |
+
def set_max_speakers(self, max_speakers):
|
154 |
+
"""Update the maximum number of speakers"""
|
155 |
+
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
|
156 |
+
|
157 |
+
if new_max < self.max_speakers:
|
158 |
+
for speaker_id in list(self.active_speakers):
|
159 |
+
if speaker_id >= new_max:
|
160 |
+
self.active_speakers.discard(speaker_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
+
if self.current_speaker >= new_max:
|
163 |
+
self.current_speaker = 0
|
164 |
+
|
165 |
+
if new_max > self.max_speakers:
|
166 |
+
self.mean_embeddings.extend([None] * (new_max - self.max_speakers))
|
167 |
+
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
|
168 |
+
else:
|
169 |
+
self.mean_embeddings = self.mean_embeddings[:new_max]
|
170 |
+
self.speaker_embeddings = self.speaker_embeddings[:new_max]
|
171 |
+
|
172 |
+
self.max_speakers = new_max
|
173 |
+
|
174 |
+
def set_change_threshold(self, threshold):
|
175 |
+
"""Update the threshold for detecting speaker changes"""
|
176 |
+
self.change_threshold = max(0.1, min(threshold, 0.99))
|
177 |
+
|
178 |
+
def add_embedding(self, embedding, timestamp=None):
|
179 |
+
"""Add a new embedding and check if there's a speaker change"""
|
180 |
+
current_time = timestamp or time.time()
|
181 |
+
|
182 |
+
if not self.previous_embeddings:
|
183 |
+
self.previous_embeddings.append(embedding)
|
184 |
+
self.speaker_embeddings[self.current_speaker].append(embedding)
|
185 |
+
if self.mean_embeddings[self.current_speaker] is None:
|
186 |
+
self.mean_embeddings[self.current_speaker] = embedding.copy()
|
187 |
+
return self.current_speaker, 1.0
|
188 |
+
|
189 |
+
current_mean = self.mean_embeddings[self.current_speaker]
|
190 |
+
if current_mean is not None:
|
191 |
+
similarity = 1.0 - cosine(embedding, current_mean)
|
192 |
+
else:
|
193 |
+
similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1])
|
194 |
+
|
195 |
+
self.last_similarity = similarity
|
196 |
+
|
197 |
+
time_since_last_change = current_time - self.last_change_time
|
198 |
+
is_speaker_change = False
|
199 |
+
|
200 |
+
if time_since_last_change >= MIN_SEGMENT_DURATION:
|
201 |
+
if similarity < self.change_threshold:
|
202 |
+
best_speaker = self.current_speaker
|
203 |
+
best_similarity = similarity
|
204 |
+
|
205 |
+
for speaker_id in range(self.max_speakers):
|
206 |
+
if speaker_id == self.current_speaker:
|
207 |
+
continue
|
208 |
+
|
209 |
+
speaker_mean = self.mean_embeddings[speaker_id]
|
210 |
|
211 |
+
if speaker_mean is not None:
|
212 |
+
speaker_similarity = 1.0 - cosine(embedding, speaker_mean)
|
213 |
+
|
214 |
+
if speaker_similarity > best_similarity:
|
215 |
+
best_similarity = speaker_similarity
|
216 |
+
best_speaker = speaker_id
|
217 |
+
|
218 |
+
if best_speaker != self.current_speaker:
|
219 |
+
is_speaker_change = True
|
220 |
+
self.current_speaker = best_speaker
|
221 |
+
elif len(self.active_speakers) < self.max_speakers:
|
222 |
+
for new_id in range(self.max_speakers):
|
223 |
+
if new_id not in self.active_speakers:
|
224 |
+
is_speaker_change = True
|
225 |
+
self.current_speaker = new_id
|
226 |
+
self.active_speakers.add(new_id)
|
227 |
+
break
|
228 |
+
|
229 |
+
if is_speaker_change:
|
230 |
+
self.last_change_time = current_time
|
231 |
+
|
232 |
+
self.previous_embeddings.append(embedding)
|
233 |
+
if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE:
|
234 |
+
self.previous_embeddings.pop(0)
|
235 |
+
|
236 |
+
self.speaker_embeddings[self.current_speaker].append(embedding)
|
237 |
+
self.active_speakers.add(self.current_speaker)
|
238 |
+
|
239 |
+
if len(self.speaker_embeddings[self.current_speaker]) > 30:
|
240 |
+
self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:]
|
241 |
|
242 |
+
if self.speaker_embeddings[self.current_speaker]:
|
243 |
+
self.mean_embeddings[self.current_speaker] = np.mean(
|
244 |
+
self.speaker_embeddings[self.current_speaker], axis=0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
)
|
246 |
+
|
247 |
+
return self.current_speaker, similarity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
|
249 |
+
def get_color_for_speaker(self, speaker_id):
|
250 |
+
"""Return color for speaker ID"""
|
251 |
+
if 0 <= speaker_id < len(SPEAKER_COLORS):
|
252 |
+
return SPEAKER_COLORS[speaker_id]
|
253 |
+
return "#FFFFFF"
|
254 |
|
255 |
+
def get_status_info(self):
|
256 |
+
"""Return status information about the speaker change detector"""
|
257 |
+
speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
|
258 |
+
|
259 |
+
return {
|
260 |
+
"current_speaker": self.current_speaker,
|
261 |
+
"speaker_counts": speaker_counts,
|
262 |
+
"active_speakers": len(self.active_speakers),
|
263 |
+
"max_speakers": self.max_speakers,
|
264 |
+
"last_similarity": self.last_similarity,
|
265 |
+
"threshold": self.change_threshold
|
266 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
+
|
269 |
+
class GradioSpeakerDiarization:
|
|
|
270 |
def __init__(self):
|
271 |
+
self.encoder = None
|
272 |
+
self.audio_processor = None
|
273 |
+
self.speaker_detector = None
|
274 |
+
self.full_sentences = []
|
275 |
+
self.sentence_speakers = []
|
276 |
+
self.is_initialized = False
|
277 |
+
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
|
278 |
+
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
279 |
+
|
280 |
+
def initialize_models(self):
|
281 |
+
"""Initialize the speaker encoder model"""
|
282 |
try:
|
283 |
+
device_str = "cuda" if torch.cuda.is_available() else "cpu"
|
284 |
+
print(f"Using device: {device_str}")
|
285 |
+
|
286 |
+
# Load SpeechBrain encoder
|
287 |
+
self.encoder = SpeechBrainEncoder(device=device_str)
|
288 |
+
success = self.encoder.load_model()
|
289 |
+
|
290 |
+
if success:
|
291 |
+
self.audio_processor = AudioProcessor(self.encoder)
|
292 |
+
self.speaker_detector = SpeakerChangeDetector(
|
293 |
+
embedding_dim=self.encoder.embedding_dim,
|
294 |
+
change_threshold=self.change_threshold,
|
295 |
+
max_speakers=self.max_speakers
|
296 |
+
)
|
297 |
+
self.is_initialized = True
|
298 |
+
return True
|
299 |
+
else:
|
300 |
+
return False
|
301 |
+
|
302 |
except Exception as e:
|
303 |
+
print(f"Model initialization error: {e}")
|
304 |
return False
|
305 |
|
306 |
+
def transcribe_audio(self, audio_input):
|
307 |
+
"""Process audio input and perform transcription with speaker diarization"""
|
308 |
+
if not self.is_initialized:
|
309 |
+
return "β Please initialize the system first!", self.get_formatted_conversation(), self.get_status_info()
|
|
|
|
|
310 |
|
311 |
+
if audio_input is None:
|
312 |
+
return "No audio received", self.get_formatted_conversation(), self.get_status_info()
|
313 |
|
314 |
+
try:
|
315 |
+
# Handle different audio input formats
|
316 |
+
if isinstance(audio_input, tuple):
|
317 |
+
sample_rate, audio_data = audio_input
|
318 |
+
else:
|
319 |
+
# Assume it's a file path
|
320 |
+
import librosa
|
321 |
+
audio_data, sample_rate = librosa.load(audio_input, sr=16000)
|
322 |
+
|
323 |
+
# Ensure audio is in the right format
|
324 |
+
if len(audio_data.shape) > 1:
|
325 |
+
audio_data = audio_data.mean(axis=1) # Convert to mono
|
326 |
+
|
327 |
+
# Perform simple transcription (placeholder - you'd want to integrate with Whisper or similar)
|
328 |
+
# For now, we'll just do speaker diarization
|
329 |
+
transcription = f"Audio segment {len(self.full_sentences) + 1} (duration: {len(audio_data)/sample_rate:.1f}s)"
|
330 |
+
|
331 |
+
# Extract speaker embedding
|
332 |
+
speaker_embedding = self.audio_processor.extract_embedding(audio_data, sample_rate)
|
333 |
+
|
334 |
+
# Store sentence and embedding
|
335 |
+
self.full_sentences.append((transcription, speaker_embedding))
|
336 |
+
|
337 |
+
# Detect speaker changes
|
338 |
+
speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
|
339 |
+
self.sentence_speakers.append(speaker_id)
|
340 |
+
|
341 |
+
status_msg = f"β
Processed audio segment. Detected as Speaker {speaker_id + 1} (similarity: {similarity:.3f})"
|
342 |
+
|
343 |
+
return status_msg, self.get_formatted_conversation(), self.get_status_info()
|
344 |
+
|
345 |
+
except Exception as e:
|
346 |
+
error_msg = f"β Error processing audio: {str(e)}"
|
347 |
+
return error_msg, self.get_formatted_conversation(), self.get_status_info()
|
348 |
+
|
349 |
+
def clear_conversation(self):
|
350 |
+
"""Clear all conversation data"""
|
351 |
+
self.full_sentences = []
|
352 |
+
self.sentence_speakers = []
|
353 |
|
354 |
+
if self.speaker_detector:
|
355 |
+
self.speaker_detector = SpeakerChangeDetector(
|
356 |
+
embedding_dim=self.encoder.embedding_dim,
|
357 |
+
change_threshold=self.change_threshold,
|
358 |
+
max_speakers=self.max_speakers
|
359 |
+
)
|
360 |
|
361 |
+
return "Conversation cleared!", self.get_formatted_conversation(), self.get_status_info()
|
362 |
|
363 |
+
def update_settings(self, threshold, max_speakers):
|
364 |
+
"""Update speaker detection settings"""
|
365 |
+
self.change_threshold = threshold
|
366 |
+
self.max_speakers = max_speakers
|
367 |
+
|
368 |
+
if self.speaker_detector:
|
369 |
+
self.speaker_detector.set_change_threshold(threshold)
|
370 |
+
self.speaker_detector.set_max_speakers(max_speakers)
|
371 |
|
372 |
+
status_msg = f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
|
373 |
+
return status_msg, self.get_formatted_conversation(), self.get_status_info()
|
374 |
+
|
375 |
+
def get_formatted_conversation(self):
|
376 |
+
"""Get the formatted conversation with speaker colors"""
|
377 |
+
try:
|
378 |
+
if not self.full_sentences:
|
379 |
+
return "No audio processed yet. Upload an audio file or record using the microphone."
|
380 |
|
381 |
+
sentences_with_style = []
|
|
|
382 |
|
383 |
+
for i, sentence in enumerate(self.full_sentences):
|
384 |
+
sentence_text, _ = sentence
|
385 |
+
if i >= len(self.sentence_speakers):
|
386 |
+
color = "#FFFFFF"
|
387 |
+
speaker_name = "Unknown"
|
388 |
+
else:
|
389 |
+
speaker_id = self.sentence_speakers[i]
|
390 |
+
color = self.speaker_detector.get_color_for_speaker(speaker_id)
|
391 |
+
speaker_name = f"Speaker {speaker_id + 1}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
392 |
|
393 |
+
sentences_with_style.append(
|
394 |
+
f'<span style="color:{color};"><b>{speaker_name}:</b> {sentence_text}</span>')
|
395 |
+
|
396 |
+
return "<br><br>".join(sentences_with_style)
|
397 |
+
|
398 |
+
except Exception as e:
|
399 |
+
return f"Error formatting conversation: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
|
401 |
+
def get_status_info(self):
|
402 |
+
"""Get current status information"""
|
403 |
+
if not self.speaker_detector:
|
404 |
+
return "Speaker detector not initialized"
|
405 |
|
406 |
try:
|
407 |
+
status = self.speaker_detector.get_status_info()
|
|
|
|
|
408 |
|
409 |
+
status_lines = [
|
410 |
+
f"**Current Speaker:** {status['current_speaker'] + 1}",
|
411 |
+
f"**Active Speakers:** {status['active_speakers']} of {status['max_speakers']}",
|
412 |
+
f"**Last Similarity:** {status['last_similarity']:.3f}",
|
413 |
+
f"**Change Threshold:** {status['threshold']:.2f}",
|
414 |
+
f"**Total Segments:** {len(self.full_sentences)}",
|
415 |
+
"",
|
416 |
+
"**Speaker Segment Counts:**"
|
417 |
+
]
|
418 |
|
419 |
+
for i in range(status['max_speakers']):
|
420 |
+
color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}"
|
421 |
+
status_lines.append(f"Speaker {i+1} ({color_name}): {status['speaker_counts'][i]}")
|
|
|
|
|
|
|
422 |
|
423 |
+
return "\n".join(status_lines)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
|
425 |
except Exception as e:
|
426 |
+
return f"Error getting status: {e}"
|
|
|
427 |
|
428 |
+
|
429 |
+
# Global instance
|
430 |
+
diarization_system = GradioSpeakerDiarization()
|
431 |
+
|
432 |
+
|
433 |
+
def initialize_system():
|
434 |
+
"""Initialize the diarization system"""
|
435 |
+
success = diarization_system.initialize_models()
|
436 |
+
if success:
|
437 |
+
return "β
System initialized successfully! Models loaded.", "", ""
|
438 |
+
else:
|
439 |
+
return "β Failed to initialize system. Please check the logs.", "", ""
|
440 |
+
|
441 |
+
|
442 |
+
def process_audio(audio):
|
443 |
+
"""Process uploaded or recorded audio"""
|
444 |
+
return diarization_system.transcribe_audio(audio)
|
445 |
+
|
446 |
+
|
447 |
+
def clear_conversation():
|
448 |
+
"""Clear the conversation"""
|
449 |
+
return diarization_system.clear_conversation()
|
450 |
+
|
451 |
+
|
452 |
+
def update_settings(threshold, max_speakers):
|
453 |
+
"""Update system settings"""
|
454 |
+
return diarization_system.update_settings(threshold, max_speakers)
|
455 |
+
|
456 |
+
|
457 |
+
# Create Gradio interface
|
458 |
+
def create_interface():
|
459 |
+
with gr.Blocks(title="Speaker Diarization", theme=gr.themes.Soft()) as app:
|
460 |
+
gr.Markdown("# π€ Audio Speaker Diarization")
|
461 |
+
gr.Markdown("Upload audio files or record directly to identify different speakers using voice characteristics.")
|
462 |
|
463 |
+
with gr.Row():
|
464 |
+
with gr.Column(scale=2):
|
465 |
+
# Initialize button
|
466 |
+
with gr.Row():
|
467 |
+
init_btn = gr.Button("π§ Initialize System", variant="primary", size="lg")
|
468 |
+
|
469 |
+
# Audio input options
|
470 |
+
gr.Markdown("### π Audio Input")
|
471 |
+
with gr.Tab("Upload Audio File"):
|
472 |
+
audio_file = gr.Audio(
|
473 |
+
label="Upload Audio File",
|
474 |
+
type="filepath",
|
475 |
+
sources=["upload"]
|
476 |
+
)
|
477 |
+
process_file_btn = gr.Button("Process Audio File", variant="secondary")
|
478 |
+
|
479 |
+
with gr.Tab("Record Audio"):
|
480 |
+
audio_mic = gr.Audio(
|
481 |
+
label="Record Audio",
|
482 |
+
type="numpy",
|
483 |
+
sources=["microphone"]
|
484 |
+
)
|
485 |
+
process_mic_btn = gr.Button("Process Recording", variant="secondary")
|
486 |
+
|
487 |
+
# Results display
|
488 |
+
status_output = gr.Textbox(
|
489 |
+
label="Status",
|
490 |
+
value="Click 'Initialize System' to start...",
|
491 |
+
lines=2,
|
492 |
+
interactive=False
|
493 |
+
)
|
494 |
+
|
495 |
+
conversation_output = gr.HTML(
|
496 |
+
value="<i>System not initialized...</i>",
|
497 |
+
label="Speaker Analysis Results"
|
498 |
+
)
|
499 |
+
|
500 |
+
# Control buttons
|
501 |
+
with gr.Row():
|
502 |
+
clear_btn = gr.Button("ποΈ Clear Results", variant="stop")
|
503 |
+
|
504 |
+
with gr.Column(scale=1):
|
505 |
+
# Settings panel
|
506 |
+
gr.Markdown("## βοΈ Settings")
|
507 |
+
|
508 |
+
threshold_slider = gr.Slider(
|
509 |
+
minimum=0.1,
|
510 |
+
maximum=0.95,
|
511 |
+
step=0.05,
|
512 |
+
value=DEFAULT_CHANGE_THRESHOLD,
|
513 |
+
label="Speaker Change Sensitivity",
|
514 |
+
info="Lower = more sensitive to speaker changes"
|
515 |
+
)
|
516 |
+
|
517 |
+
max_speakers_slider = gr.Slider(
|
518 |
+
minimum=2,
|
519 |
+
maximum=ABSOLUTE_MAX_SPEAKERS,
|
520 |
+
step=1,
|
521 |
+
value=DEFAULT_MAX_SPEAKERS,
|
522 |
+
label="Maximum Number of Speakers"
|
523 |
+
)
|
524 |
+
|
525 |
+
update_settings_btn = gr.Button("Update Settings", variant="secondary")
|
526 |
+
|
527 |
+
# System status
|
528 |
+
system_status = gr.Textbox(
|
529 |
+
label="System Status",
|
530 |
+
value="System not initialized",
|
531 |
+
lines=12,
|
532 |
+
interactive=False
|
533 |
+
)
|
534 |
+
|
535 |
+
# Speaker color legend
|
536 |
+
gr.Markdown("## π¨ Speaker Colors")
|
537 |
+
color_info = []
|
538 |
+
for i, (color, name) in enumerate(zip(SPEAKER_COLORS[:DEFAULT_MAX_SPEAKERS], SPEAKER_COLOR_NAMES[:DEFAULT_MAX_SPEAKERS])):
|
539 |
+
color_info.append(f'<span style="color:{color};">β</span> Speaker {i+1} ({name})')
|
540 |
+
|
541 |
+
gr.HTML("<br>".join(color_info))
|
542 |
|
543 |
+
# Event handlers
|
544 |
+
init_btn.click(
|
545 |
+
initialize_system,
|
546 |
+
outputs=[status_output, conversation_output, system_status]
|
547 |
+
)
|
548 |
|
549 |
+
process_file_btn.click(
|
550 |
+
process_audio,
|
551 |
+
inputs=[audio_file],
|
552 |
+
outputs=[status_output, conversation_output, system_status]
|
553 |
+
)
|
|
|
554 |
|
555 |
+
process_mic_btn.click(
|
556 |
+
process_audio,
|
557 |
+
inputs=[audio_mic],
|
558 |
+
outputs=[status_output, conversation_output, system_status]
|
559 |
+
)
|
|
|
|
|
|
|
560 |
|
561 |
+
clear_btn.click(
|
562 |
+
clear_conversation,
|
563 |
+
outputs=[status_output, conversation_output, system_status]
|
564 |
+
)
|
565 |
|
566 |
+
update_settings_btn.click(
|
567 |
+
update_settings,
|
568 |
+
inputs=[threshold_slider, max_speakers_slider],
|
569 |
+
outputs=[status_output, conversation_output, system_status]
|
570 |
+
)
|
571 |
|
572 |
+
return app
|
|
|
|
|
573 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
574 |
|
575 |
if __name__ == "__main__":
|
576 |
+
app = create_interface()
|
577 |
+
app.launch(
|
578 |
+
server_name="0.0.0.0",
|
579 |
+
server_port=7860,
|
580 |
+
share=True
|
581 |
+
)
|