Saiyaswanth007's picture
Revert portg
e48f372
raw
history blame
34.8 kB
import gradio as gr
import numpy as np
import queue
import torch
import time
import threading
import os
import urllib.request
import torchaudio
from scipy.spatial.distance import cosine
from RealtimeSTT import AudioToTextRecorder
from fastapi import FastAPI, APIRouter
from fastrtc import Stream, AsyncStreamHandler, ReplyOnPause, get_cloudflare_turn_credentials_async, get_cloudflare_turn_credentials
import json
import io
import wave
import asyncio
import uvicorn
# Simplified configuration parameters
SILENCE_THRESHS = [0, 0.4]
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
FINAL_BEAM_SIZE = 5
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
REALTIME_BEAM_SIZE = 5
TRANSCRIPTION_LANGUAGE = "en"
SILERO_SENSITIVITY = 0.4
WEBRTC_SENSITIVITY = 3
MIN_LENGTH_OF_RECORDING = 0.7
PRE_RECORDING_BUFFER_DURATION = 0.35
# Speaker change detection parameters
DEFAULT_CHANGE_THRESHOLD = 0.7
EMBEDDING_HISTORY_SIZE = 5
MIN_SEGMENT_DURATION = 1.0
DEFAULT_MAX_SPEAKERS = 4
ABSOLUTE_MAX_SPEAKERS = 10
# Global variables
FAST_SENTENCE_END = True
SAMPLE_RATE = 16000
BUFFER_SIZE = 512
CHANNELS = 1
# Speaker colors
SPEAKER_COLORS = [
"#FFFF00", # Yellow
"#FF0000", # Red
"#00FF00", # Green
"#00FFFF", # Cyan
"#FF00FF", # Magenta
"#0000FF", # Blue
"#FF8000", # Orange
"#00FF80", # Spring Green
"#8000FF", # Purple
"#FFFFFF", # White
]
SPEAKER_COLOR_NAMES = [
"Yellow", "Red", "Green", "Cyan", "Magenta",
"Blue", "Orange", "Spring Green", "Purple", "White"
]
class SpeechBrainEncoder:
"""ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
def __init__(self, device="cpu"):
self.device = device
self.model = None
self.embedding_dim = 192
self.model_loaded = False
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
os.makedirs(self.cache_dir, exist_ok=True)
def _download_model(self):
"""Download pre-trained SpeechBrain ECAPA-TDNN model if not present"""
model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt"
model_path = os.path.join(self.cache_dir, "embedding_model.ckpt")
if not os.path.exists(model_path):
print(f"Downloading ECAPA-TDNN model to {model_path}...")
urllib.request.urlretrieve(model_url, model_path)
return model_path
def load_model(self):
"""Load the ECAPA-TDNN model"""
try:
from speechbrain.pretrained import EncoderClassifier
model_path = self._download_model()
self.model = EncoderClassifier.from_hparams(
source="speechbrain/spkrec-ecapa-voxceleb",
savedir=self.cache_dir,
run_opts={"device": self.device}
)
self.model_loaded = True
return True
except Exception as e:
print(f"Error loading ECAPA-TDNN model: {e}")
return False
def embed_utterance(self, audio, sr=16000):
"""Extract speaker embedding from audio"""
if not self.model_loaded:
raise ValueError("Model not loaded. Call load_model() first.")
try:
if isinstance(audio, np.ndarray):
waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0)
else:
waveform = audio.unsqueeze(0)
if sr != 16000:
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
with torch.no_grad():
embedding = self.model.encode_batch(waveform)
return embedding.squeeze().cpu().numpy()
except Exception as e:
print(f"Error extracting embedding: {e}")
return np.zeros(self.embedding_dim)
class AudioProcessor:
"""Processes audio data to extract speaker embeddings"""
def __init__(self, encoder):
self.encoder = encoder
def extract_embedding(self, audio_int16):
try:
float_audio = audio_int16.astype(np.float32) / 32768.0
if np.abs(float_audio).max() > 1.0:
float_audio = float_audio / np.abs(float_audio).max()
embedding = self.encoder.embed_utterance(float_audio)
return embedding
except Exception as e:
print(f"Embedding extraction error: {e}")
return np.zeros(self.encoder.embedding_dim)
class SpeakerChangeDetector:
"""Speaker change detector that supports a configurable number of speakers"""
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
self.embedding_dim = embedding_dim
self.change_threshold = change_threshold
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
self.current_speaker = 0
self.previous_embeddings = []
self.last_change_time = time.time()
self.mean_embeddings = [None] * self.max_speakers
self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
self.last_similarity = 0.0
self.active_speakers = set([0])
def set_max_speakers(self, max_speakers):
"""Update the maximum number of speakers"""
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
if new_max < self.max_speakers:
for speaker_id in list(self.active_speakers):
if speaker_id >= new_max:
self.active_speakers.discard(speaker_id)
if self.current_speaker >= new_max:
self.current_speaker = 0
if new_max > self.max_speakers:
self.mean_embeddings.extend([None] * (new_max - self.max_speakers))
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
else:
self.mean_embeddings = self.mean_embeddings[:new_max]
self.speaker_embeddings = self.speaker_embeddings[:new_max]
self.max_speakers = new_max
def set_change_threshold(self, threshold):
"""Update the threshold for detecting speaker changes"""
self.change_threshold = max(0.1, min(threshold, 0.99))
def add_embedding(self, embedding, timestamp=None):
"""Add a new embedding and check if there's a speaker change"""
current_time = timestamp or time.time()
if not self.previous_embeddings:
self.previous_embeddings.append(embedding)
self.speaker_embeddings[self.current_speaker].append(embedding)
if self.mean_embeddings[self.current_speaker] is None:
self.mean_embeddings[self.current_speaker] = embedding.copy()
return self.current_speaker, 1.0
current_mean = self.mean_embeddings[self.current_speaker]
if current_mean is not None:
similarity = 1.0 - cosine(embedding, current_mean)
else:
similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1])
self.last_similarity = similarity
time_since_last_change = current_time - self.last_change_time
is_speaker_change = False
if time_since_last_change >= MIN_SEGMENT_DURATION:
if similarity < self.change_threshold:
best_speaker = self.current_speaker
best_similarity = similarity
for speaker_id in range(self.max_speakers):
if speaker_id == self.current_speaker:
continue
speaker_mean = self.mean_embeddings[speaker_id]
if speaker_mean is not None:
speaker_similarity = 1.0 - cosine(embedding, speaker_mean)
if speaker_similarity > best_similarity:
best_similarity = speaker_similarity
best_speaker = speaker_id
if best_speaker != self.current_speaker:
is_speaker_change = True
self.current_speaker = best_speaker
elif len(self.active_speakers) < self.max_speakers:
for new_id in range(self.max_speakers):
if new_id not in self.active_speakers:
is_speaker_change = True
self.current_speaker = new_id
self.active_speakers.add(new_id)
break
if is_speaker_change:
self.last_change_time = current_time
self.previous_embeddings.append(embedding)
if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE:
self.previous_embeddings.pop(0)
self.speaker_embeddings[self.current_speaker].append(embedding)
self.active_speakers.add(self.current_speaker)
if len(self.speaker_embeddings[self.current_speaker]) > 30:
self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:]
if self.speaker_embeddings[self.current_speaker]:
self.mean_embeddings[self.current_speaker] = np.mean(
self.speaker_embeddings[self.current_speaker], axis=0
)
return self.current_speaker, similarity
def get_color_for_speaker(self, speaker_id):
"""Return color for speaker ID"""
if 0 <= speaker_id < len(SPEAKER_COLORS):
return SPEAKER_COLORS[speaker_id]
return "#FFFFFF"
def get_status_info(self):
"""Return status information about the speaker change detector"""
speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
return {
"current_speaker": self.current_speaker,
"speaker_counts": speaker_counts,
"active_speakers": len(self.active_speakers),
"max_speakers": self.max_speakers,
"last_similarity": self.last_similarity,
"threshold": self.change_threshold
}
class RealtimeSpeakerDiarization:
def __init__(self):
self.encoder = None
self.audio_processor = None
self.speaker_detector = None
self.recorder = None
self.sentence_queue = queue.Queue()
self.full_sentences = []
self.sentence_speakers = []
self.pending_sentences = []
self.displayed_text = ""
self.last_realtime_text = ""
self.is_running = False
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
self.max_speakers = DEFAULT_MAX_SPEAKERS
self.current_conversation = ""
self.audio_buffer = []
def initialize_models(self):
"""Initialize the speaker encoder model"""
try:
device_str = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device_str}")
self.encoder = SpeechBrainEncoder(device=device_str)
success = self.encoder.load_model()
if success:
self.audio_processor = AudioProcessor(self.encoder)
self.speaker_detector = SpeakerChangeDetector(
embedding_dim=self.encoder.embedding_dim,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
print("ECAPA-TDNN model loaded successfully!")
return True
else:
print("Failed to load ECAPA-TDNN model")
return False
except Exception as e:
print(f"Model initialization error: {e}")
return False
def live_text_detected(self, text):
"""Callback for real-time transcription updates"""
text = text.strip()
if text:
sentence_delimiters = '.?!。'
prob_sentence_end = (
len(self.last_realtime_text) > 0
and text[-1] in sentence_delimiters
and self.last_realtime_text[-1] in sentence_delimiters
)
self.last_realtime_text = text
if prob_sentence_end and FAST_SENTENCE_END:
self.recorder.stop()
elif prob_sentence_end:
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[0]
else:
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[1]
def process_final_text(self, text):
"""Process final transcribed text with speaker embedding"""
text = text.strip()
if text:
try:
bytes_data = self.recorder.last_transcription_bytes
self.sentence_queue.put((text, bytes_data))
self.pending_sentences.append(text)
except Exception as e:
print(f"Error processing final text: {e}")
def process_sentence_queue(self):
"""Process sentences in the queue for speaker detection"""
while self.is_running:
try:
text, bytes_data = self.sentence_queue.get(timeout=1)
# Convert audio data to int16
audio_int16 = np.frombuffer(bytes_data, dtype=np.int16)
# Extract speaker embedding
speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
# Store sentence and embedding
self.full_sentences.append((text, speaker_embedding))
# Fill in missing speaker assignments
while len(self.sentence_speakers) < len(self.full_sentences) - 1:
self.sentence_speakers.append(0)
# Detect speaker changes
speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
self.sentence_speakers.append(speaker_id)
# Remove from pending
if text in self.pending_sentences:
self.pending_sentences.remove(text)
# Update conversation display
self.current_conversation = self.get_formatted_conversation()
except queue.Empty:
continue
except Exception as e:
print(f"Error processing sentence: {e}")
def start_recording(self):
"""Start the recording and transcription process"""
if self.encoder is None:
return "Please initialize models first!"
try:
# Setup recorder configuration for manual audio input
recorder_config = {
'spinner': False,
'use_microphone': False, # We'll feed audio manually
'model': FINAL_TRANSCRIPTION_MODEL,
'language': TRANSCRIPTION_LANGUAGE,
'silero_sensitivity': SILERO_SENSITIVITY,
'webrtc_sensitivity': WEBRTC_SENSITIVITY,
'post_speech_silence_duration': SILENCE_THRESHS[1],
'min_length_of_recording': MIN_LENGTH_OF_RECORDING,
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
'min_gap_between_recordings': 0,
'enable_realtime_transcription': True,
'realtime_processing_pause': 0,
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
'on_realtime_transcription_update': self.live_text_detected,
'beam_size': FINAL_BEAM_SIZE,
'beam_size_realtime': REALTIME_BEAM_SIZE,
'buffer_size': BUFFER_SIZE,
'sample_rate': SAMPLE_RATE,
}
self.recorder = AudioToTextRecorder(**recorder_config)
# Start sentence processing thread
self.is_running = True
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
self.sentence_thread.start()
# Start transcription thread
self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
self.transcription_thread.start()
return "Recording started successfully! FastRTC audio input ready."
except Exception as e:
return f"Error starting recording: {e}"
def run_transcription(self):
"""Run the transcription loop"""
try:
while self.is_running:
self.recorder.text(self.process_final_text)
except Exception as e:
print(f"Transcription error: {e}")
def stop_recording(self):
"""Stop the recording process"""
self.is_running = False
if self.recorder:
self.recorder.stop()
return "Recording stopped!"
def clear_conversation(self):
"""Clear all conversation data"""
self.full_sentences = []
self.sentence_speakers = []
self.pending_sentences = []
self.displayed_text = ""
self.last_realtime_text = ""
self.current_conversation = "Conversation cleared!"
if self.speaker_detector:
self.speaker_detector = SpeakerChangeDetector(
embedding_dim=self.encoder.embedding_dim,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
return "Conversation cleared!"
def update_settings(self, threshold, max_speakers):
"""Update speaker detection settings"""
self.change_threshold = threshold
self.max_speakers = max_speakers
if self.speaker_detector:
self.speaker_detector.set_change_threshold(threshold)
self.speaker_detector.set_max_speakers(max_speakers)
return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
def get_formatted_conversation(self):
"""Get the formatted conversation with speaker colors"""
try:
sentences_with_style = []
# Process completed sentences
for i, sentence in enumerate(self.full_sentences):
sentence_text, _ = sentence
if i >= len(self.sentence_speakers):
color = "#FFFFFF"
speaker_name = "Unknown"
else:
speaker_id = self.sentence_speakers[i]
color = self.speaker_detector.get_color_for_speaker(speaker_id)
speaker_name = f"Speaker {speaker_id + 1}"
sentences_with_style.append(
f'<span style="color:{color};"><b>{speaker_name}:</b> {sentence_text}</span>')
# Add pending sentences
for pending_sentence in self.pending_sentences:
sentences_with_style.append(
f'<span style="color:#60FFFF;"><b>Processing:</b> {pending_sentence}</span>')
if sentences_with_style:
return "<br><br>".join(sentences_with_style)
else:
return "Waiting for speech input..."
except Exception as e:
return f"Error formatting conversation: {e}"
def get_status_info(self):
"""Get current status information"""
if not self.speaker_detector:
return "Speaker detector not initialized"
try:
status = self.speaker_detector.get_status_info()
status_lines = [
f"**Current Speaker:** {status['current_speaker'] + 1}",
f"**Active Speakers:** {status['active_speakers']} of {status['max_speakers']}",
f"**Last Similarity:** {status['last_similarity']:.3f}",
f"**Change Threshold:** {status['threshold']:.2f}",
f"**Total Sentences:** {len(self.full_sentences)}",
"",
"**Speaker Segment Counts:**"
]
for i in range(status['max_speakers']):
color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}"
status_lines.append(f"Speaker {i+1} ({color_name}): {status['speaker_counts'][i]}")
return "\n".join(status_lines)
except Exception as e:
return f"Error getting status: {e}"
def feed_audio_data(self, audio_data):
"""Feed audio data to the recorder"""
if not self.is_running or not self.recorder:
return
try:
# Ensure audio is in the correct format (16-bit PCM)
if isinstance(audio_data, np.ndarray):
if audio_data.dtype != np.int16:
# Convert float to int16
if audio_data.dtype == np.float32 or audio_data.dtype == np.float64:
audio_data = (audio_data * 32767).astype(np.int16)
else:
audio_data = audio_data.astype(np.int16)
# Convert to bytes
audio_bytes = audio_data.tobytes()
else:
audio_bytes = audio_data
# Feed to recorder
self.recorder.feed_audio(audio_bytes)
except Exception as e:
print(f"Error feeding audio data: {e}")
# FastRTC Audio Handler
class DiarizationHandler(AsyncStreamHandler):
def __init__(self, diarization_system):
super().__init__(reply_on_pause=ReplyOnPause.NEVER)
self.diarization_system = diarization_system
def copy(self):
# Return a fresh handler for each new stream connection
return DiarizationHandler(self.diarization_system)
async def emit(self):
"""Not used in this implementation"""
return None
async def receive(self, frame):
"""Receive audio data from FastRTC and process it"""
try:
if self.diarization_system.is_running:
# Frame should be a numpy array of audio data
if hasattr(frame, 'data'):
audio_data = frame.data
else:
audio_data = frame
# Feed audio data to the diarization system
self.diarization_system.feed_audio_data(audio_data)
except Exception as e:
print(f"Error in FastRTC handler: {e}")
# Global instance
diarization_system = RealtimeSpeakerDiarization()
def initialize_system():
"""Initialize the diarization system"""
success = diarization_system.initialize_models()
if success:
return "✅ System initialized successfully! Models loaded."
else:
return "❌ Failed to initialize system. Please check the logs."
def start_recording():
"""Start recording and transcription"""
return diarization_system.start_recording()
def stop_recording():
"""Stop recording and transcription"""
return diarization_system.stop_recording()
def clear_conversation():
"""Clear the conversation"""
return diarization_system.clear_conversation()
def update_settings(threshold, max_speakers):
"""Update system settings"""
return diarization_system.update_settings(threshold, max_speakers)
def get_conversation():
"""Get the current conversation"""
return diarization_system.get_formatted_conversation()
def get_status():
"""Get system status"""
return diarization_system.get_status_info()
# Create Gradio interface
def create_interface():
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Monochrome()) as interface:
gr.Markdown("# 🎤 Real-time Speech Recognition with Speaker Diarization")
gr.Markdown("This app performs real-time speech recognition with automatic speaker identification and color-coding.")
with gr.Row():
with gr.Column(scale=2):
# Main conversation display
conversation_output = gr.HTML(
value="<i>Click 'Initialize System' to start...</i>",
label="Live Conversation"
)
# Control buttons
with gr.Row():
init_btn = gr.Button("🔧 Initialize System", variant="secondary")
start_btn = gr.Button("🎙️ Start Recording", variant="primary", interactive=False)
stop_btn = gr.Button("⏹️ Stop Recording", variant="stop", interactive=False)
clear_btn = gr.Button("🗑️ Clear Conversation", interactive=False)
# Status display
status_output = gr.Textbox(
label="System Status",
value="System not initialized",
lines=8,
interactive=False
)
with gr.Column(scale=1):
# Settings panel
gr.Markdown("## ⚙️ Settings")
threshold_slider = gr.Slider(
minimum=0.1,
maximum=0.95,
step=0.05,
value=DEFAULT_CHANGE_THRESHOLD,
label="Speaker Change Sensitivity",
info="Lower values = more sensitive to speaker changes"
)
max_speakers_slider = gr.Slider(
minimum=2,
maximum=ABSOLUTE_MAX_SPEAKERS,
step=1,
value=DEFAULT_MAX_SPEAKERS,
label="Maximum Number of Speakers"
)
update_settings_btn = gr.Button("Update Settings")
# Instructions
gr.Markdown("## 📝 Instructions")
gr.Markdown("""
1. Click **Initialize System** to load models
2. Click **Start Recording** to begin processing
3. Use the FastRTC interface below to connect your microphone
4. Allow microphone access when prompted
5. Speak into your microphone
6. Watch real-time transcription with speaker labels
7. Adjust settings as needed
""")
# Speaker color legend
gr.Markdown("## 🎨 Speaker Colors")
color_info = []
for i, (color, name) in enumerate(zip(SPEAKER_COLORS, SPEAKER_COLOR_NAMES)):
color_info.append(f'<span style="color:{color};">■</span> Speaker {i+1} ({name})')
gr.HTML("<br>".join(color_info[:DEFAULT_MAX_SPEAKERS]))
# FastRTC Integration Notice
gr.Markdown("""
## ℹ️ About FastRTC
This app uses FastRTC for low-latency audio streaming.
For optimal performance, use a modern browser and allow microphone access when prompted.
""")
# Auto-refresh conversation and status
def refresh_display():
return diarization_system.get_formatted_conversation(), diarization_system.get_status_info()
# Event handlers
def on_initialize():
result = initialize_system()
if "successfully" in result:
return (
result,
gr.update(interactive=True), # start_btn
gr.update(interactive=True), # clear_btn
get_conversation(),
get_status()
)
else:
return (
result,
gr.update(interactive=False), # start_btn
gr.update(interactive=False), # clear_btn
get_conversation(),
get_status()
)
def on_start():
result = start_recording()
return (
result,
gr.update(interactive=False), # start_btn
gr.update(interactive=True), # stop_btn
)
def on_stop():
result = stop_recording()
return (
result,
gr.update(interactive=True), # start_btn
gr.update(interactive=False), # stop_btn
)
# Connect event handlers
init_btn.click(
on_initialize,
outputs=[status_output, start_btn, clear_btn, conversation_output, status_output]
)
start_btn.click(
on_start,
outputs=[status_output, start_btn, stop_btn]
)
stop_btn.click(
on_stop,
outputs=[status_output, start_btn, stop_btn]
)
clear_btn.click(
clear_conversation,
outputs=[status_output]
)
update_settings_btn.click(
update_settings,
inputs=[threshold_slider, max_speakers_slider],
outputs=[status_output]
)
# Auto-refresh every 2 seconds when recording
refresh_timer = gr.Timer(2.0)
refresh_timer.tick(
refresh_display,
outputs=[conversation_output, status_output]
)
return interface
# Create API router for endpoints
router = APIRouter()
# Health check endpoint
@router.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"timestamp": time.time(),
"system_initialized": diarization_system.encoder is not None,
"recording_active": diarization_system.is_running
}
# API endpoint to get conversation
@router.get("/api/conversation")
async def get_conversation_api():
"""API endpoint to get current conversation"""
return {
"conversation": diarization_system.get_formatted_conversation(),
"status": diarization_system.get_status_info(),
"is_recording": diarization_system.is_running
}
# API endpoint to control recording
@router.post("/api/control/{action}")
async def control_recording(action: str):
"""API endpoint to control recording (start/stop/clear/initialize)"""
if action == "start":
result = diarization_system.start_recording()
elif action == "stop":
result = diarization_system.stop_recording()
elif action == "clear":
result = diarization_system.clear_conversation()
elif action == "initialize":
result = initialize_system()
else:
return {"error": "Invalid action. Use: start, stop, clear, or initialize"}
return {"result": result, "is_recording": diarization_system.is_running}
# Main application setup
def create_app():
"""Create and configure the FastAPI app with Gradio and FastRTC"""
# Create FastAPI app
app = FastAPI(
title="Real-time Speaker Diarization",
description="Real-time speech recognition with speaker diarization using FastRTC",
version="1.0.0"
)
# Include API routes
app.include_router(router)
# Create Gradio interface
gradio_interface = create_interface()
# Mount Gradio interface
app = gr.mount_gradio_app(app, gradio_interface, path="/")
# Setup FastRTC stream
try:
# Create the handler
handler = DiarizationHandler(diarization_system)
# Get TURN credentials
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
print("Warning: HF_TOKEN not set. Audio streaming may not work properly.")
# Use basic STUN server as fallback
rtc_config = {
"iceServers": [{"urls": "stun:stun.l.google.com:19302"}]
}
else:
# Get Cloudflare TURN credentials
turn_credentials = get_cloudflare_turn_credentials(hf_token)
rtc_config = {
"iceServers": [
{"urls": "stun:stun.l.google.com:19302"},
{
"urls": f"turn:{turn_credentials['urls'][0]}",
"username": turn_credentials["username"],
"credential": turn_credentials["credential"]
}
]
}
# Create FastRTC stream
stream = Stream(
handler=handler,
rtc_config=rtc_config,
audio_sample_rate=SAMPLE_RATE,
audio_channels=CHANNELS
)
# Add FastRTC endpoints
app.mount("/stream", stream.app)
print("FastRTC stream configured successfully!")
except Exception as e:
print(f"Warning: Failed to setup FastRTC stream: {e}")
print("Audio streaming will not be available.")
return app
# Main entry point
if __name__ == "__main__":
# Create the app
app = create_app()
# Configuration
host = os.environ.get("HOST", "0.0.0.0")
port = int(os.environ.get("PORT", 7860))
print(f"""
🎤 Real-time Speaker Diarization Server
=====================================
Starting server on: http://{host}:{port}
Features:
- Real-time speech recognition
- Speaker diarization with color coding
- FastRTC low-latency audio streaming
- Web interface for easy interaction
Make sure to:
1. Set HF_TOKEN environment variable for TURN server access
2. Allow microphone access in your browser
3. Use a modern browser for best performance
API Endpoints:
- GET /health - Health check
- GET /api/conversation - Get current conversation
- POST /api/control/{{action}} - Control recording (start/stop/clear/initialize)
- WS /stream - FastRTC audio stream endpoint
""")
# Run the server
uvicorn.run(
app,
host=host,
port=port,
log_level="info",
access_log=True
)