SEO / app.py
AnalysisWithMSR's picture
Update app.py
783f341 verified
raw
history blame
7.06 kB
import gradio as gr
from transformers import pipeline
import whisper
from pydub import AudioSegment
import tempfile
import os
import googleapiclient.discovery
from youtube_transcript_api import YouTubeTranscriptApi
import openai
# Load API keys from environment variables (recommended)
YOUTUBE_API_KEY = os.environ.get("YOUTUBE_API_KEY")
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
def extract_video_id(url):
"""Extracts the video ID from a YouTube URL."""
try:
parsed_url = urlparse(url)
if "youtube.com" in parsed_url.netloc:
query_params = parse_qs(parsed_url.query)
return query_params.get('v', [None])[0]
elif "youtu.be" in parsed_url.netloc:
return parsed_url.path.strip("/")
else:
print("Invalid YouTube URL.")
return None
except Exception as e:
print(f"Error parsing URL: {e}")
return None
def get_video_duration(video_id):
"""Fetches the video duration in minutes (if API key provided)."""
if not YOUTUBE_API_KEY:
print("Missing YouTube API key. Skipping video duration.")
return None
try:
youtube = googleapiclient.discovery.build("youtube", "v3", developerKey=YOUTUBE_API_KEY)
request = youtube.videos().list(part="contentDetails", id=video_id)
response = request.execute()
if response["items"]:
duration = response["items"][0]["contentDetails"]["duration"]
match = re.match(r'PT(?:(\d+)H)?(?:(\d+)M)?(?:(\d+)S)?', duration)
hours = int(match.group(1)) if match.group(1) else 0
minutes = int(match.group(2)) if match.group(2) else 0
seconds = int(match.group(3)) if match.group(3) else 0
return hours * 60 + minutes + seconds / 60
else:
print("No video details found.")
return None
except Exception as e:
print(f"Error fetching video duration: {e}")
return None
def download_and_transcribe_with_whisper(youtube_url):
"""Downloads and transcribes audio using Whisper."""
try:
with tempfile.TemporaryDirectory() as temp_dir:
temp_audio_file = os.path.join(temp_dir, "audio.mp3")
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': temp_audio_file,
'extractaudio': True,
'audioquality': 1,
}
# Download audio using yt-dlp
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([youtube_url])
# Convert to wav for Whisper
audio = AudioSegment.from_file(temp_audio_file)
wav_file = os.path.join(temp_dir, "audio.wav")
audio.export(wav_file, format="wav")
# Run Whisper transcription
model = whisper.load_model("large")
result = model.transcribe(wav_file)
transcript = result['text']
return transcript
except Exception as e:
print(f"Error during transcription: {e}")
return None
def get_transcript_from_youtube_api(video_id):
"""Fetches transcript using YouTube API (if available)."""
if not YOUTUBE_API_KEY:
print("Missing YouTube API key. Skipping YouTube transcript.")
return None
try:
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
for transcript in transcript_list:
if not transcript.is_generated:
segments = transcript.fetch()
return " ".join(segment['text'] for segment in segments)
print("Manual transcript not found.")
return None
except Exception as e:
print(f"Error fetching transcript: {e}")
return None
def get_transcript(youtube_url):
"""Gets transcript from YouTube API or Whisper if unavailable."""
video_id = extract_video_id(youtube_url)
if not video_id:
print("Invalid or unsupported YouTube URL.")
return None
video_length = get_video_duration(video_id)
if video_length:
transcript = get_transcript_from_youtube_api(video_id)
if transcript:
return transcript
print("Using Whisper for transcription.")
return download_and_transcribe_with_whisper(youtube_url)
def summarize_text_huggingface(text):
"""Summarizes text using a Hugging Face summarization model."""
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if torch.cuda.is_available() else -1)
max_input_length = 1024
chunk_overlap = 100
text_chunks = [
text[i:i + max_input_length]
for i in range(0, len(text), max_input_length - chunk_overlap)
]
summaries = [
summarizer(chunk, max_length=100, min_length=50, do_sample=False)[0]['summary_text']
for chunk in text_chunks
]
return " ".join(summaries)
def generate_optimized_content(summarized_transcript):
"""Generates optimized content using OpenAI (if API key provided)."""
if not OPENAI_API_KEY:
print("Missing OpenAI API key. Skipping optimized content generation.")
return None
prompt = f"""
Analyze the following summarized YouTube video transcript and:
1. Extract the top 10 keywords.
2. Generate an optimized title (less than 65 characters).
3. Create an engaging description.
4. Generate related tags for the video.
Summarized Transcript:
{summarized_transcript}
Provide the results in the following JSON format:
{{
"keywords": ["keyword1", "keyword2", ..., "keyword10"],
"title": "Generated Title",
"description": "Generated Description",
"tags": ["tag1", "tag2", ..., "tag10"]
}}
"""
try:
# Use the updated OpenAI API format for chat completions
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are an SEO expert."},
{"role": "user", "content": prompt}
]
)
# Extract and parse the response
response_content = response['choices'][0]['message']['content']
content = json.loads(response_content)
return content
except Exception as e:
print(f"Error generating content: {e}")
return None
def seo_tool(youtube_url):
"""This function takes a YouTube URL as input and performs SEO optimization tasks."""
transcript = get_transcript(youtube_url)
if not transcript:
return "Could not fetch the transcript. Please try another video."
summary = summarize_text_huggingface(transcript)
optimized_content = generate_optimized_content(summary)
return summary, optimized_content
interface = gr.Interface(
fn=seo_tool,
inputs="text",
outputs=["text", "json"],
title="SEO Tool for YouTube Videos",
description="Enter a YouTube URL to get a summary and optimized content suggestions."
)
if __name__ == "__main__":
interface.launch()