Spaces:
Sleeping
Sleeping
import googleapiclient.discovery | |
import re | |
import yt_dlp | |
import whisper | |
from pydub import AudioSegment | |
import tempfile | |
from transformers import pipeline | |
from youtube_transcript_api import YouTubeTranscriptApi | |
import torch | |
import openai | |
import json | |
from urllib.parse import urlparse, parse_qs | |
import os | |
import gradio as gr | |
# API Keys setup | |
youtube_api_key = os.getenv("YOUTUBE_API_KEY") # Set these as environment variables | |
openai_api_key = os.getenv("OPENAI_API_KEY") | |
openai.api_key = openai_api_key | |
# Validation for missing API keys | |
if not youtube_api_key: | |
raise ValueError("YOUTUBE_API_KEY is not set. Please set it as an environment variable.") | |
if not openai_api_key: | |
raise ValueError("OPENAI_API_KEY is not set. Please set it as an environment variable.") | |
# Utility Functions | |
def extract_video_id(url): | |
"""Extract the video ID from a YouTube URL.""" | |
try: | |
parsed_url = urlparse(url) | |
if "youtube.com" in parsed_url.netloc: | |
query_params = parse_qs(parsed_url.query) | |
return query_params.get('v', [None])[0] | |
elif "youtu.be" in parsed_url.netloc: | |
return parsed_url.path.strip("/") | |
return None | |
except Exception as e: | |
print(f"Error parsing URL: {e}") | |
return None | |
def get_video_duration(video_id): | |
"""Fetch the video duration.""" | |
try: | |
youtube = googleapiclient.discovery.build("youtube", "v3", developerKey=youtube_api_key) | |
request = youtube.videos().list(part="contentDetails", id=video_id) | |
response = request.execute() | |
if response["items"]: | |
duration = response["items"][0]["contentDetails"]["duration"] | |
match = re.match(r'PT(?:(\d+)H)?(?:(\d+)M)?(?:(\d+)S)?', duration) | |
hours = int(match.group(1)) if match.group(1) else 0 | |
minutes = int(match.group(2)) if match.group(2) else 0 | |
seconds = int(match.group(3)) if match.group(3) else 0 | |
return hours * 60 + minutes + seconds / 60 | |
return None | |
except Exception as e: | |
print(f"Error fetching duration: {e}") | |
return None | |
def download_and_transcribe_with_whisper(youtube_url): | |
"""Download audio and transcribe using Whisper.""" | |
try: | |
with tempfile.TemporaryDirectory() as temp_dir: | |
temp_audio_file = os.path.join(temp_dir, "audio.mp3") | |
ydl_opts = { | |
'format': 'bestaudio/best', | |
'outtmpl': temp_audio_file, | |
'postprocessors': [{ | |
'key': 'FFmpegExtractAudio', | |
'preferredcodec': 'mp3', | |
'preferredquality': '192', | |
}], | |
} | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
ydl.download([youtube_url]) | |
audio = AudioSegment.from_file(temp_audio_file) | |
wav_file = os.path.join(temp_dir, "audio.wav") | |
audio.export(wav_file, format="wav") | |
model = whisper.load_model("large") | |
result = model.transcribe(wav_file) | |
return result['text'] | |
except Exception as e: | |
print(f"Error during Whisper transcription: {e}") | |
return None | |
def get_transcript_from_youtube_api(video_id, video_length): | |
"""Fetch transcript using YouTubeTranscriptApi.""" | |
try: | |
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id) | |
for transcript in transcript_list: | |
if not transcript.is_generated: | |
return " ".join(segment['text'] for segment in transcript.fetch()) | |
if video_length > 15: | |
auto_transcript = transcript_list.find_generated_transcript(['en']) | |
return " ".join(segment['text'] for segment in auto_transcript.fetch()) | |
return None | |
except Exception as e: | |
print(f"Error fetching transcript: {e}") | |
return None | |
def get_transcript(youtube_url): | |
"""Fetch transcript or use Whisper fallback.""" | |
video_id = extract_video_id(youtube_url) | |
if not video_id: | |
return "Invalid or unsupported YouTube URL." | |
video_length = get_video_duration(video_id) | |
if video_length: | |
transcript = get_transcript_from_youtube_api(video_id, video_length) | |
return transcript if transcript else download_and_transcribe_with_whisper(youtube_url) | |
return "Error fetching video details." | |
def summarize_text(text): | |
"""Summarize text using Hugging Face's BART model.""" | |
try: | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if torch.cuda.is_available() else -1) | |
max_input_length = 1024 | |
chunk_overlap = 100 | |
text_chunks = [ | |
text[i:i + max_input_length] | |
for i in range(0, len(text), max_input_length - chunk_overlap) | |
] | |
summaries = [ | |
summarizer(chunk, max_length=100, min_length=50, do_sample=False)[0]['summary_text'] | |
for chunk in text_chunks | |
] | |
return " ".join(summaries) | |
except Exception as e: | |
print(f"Error during summarization: {e}") | |
return None | |
def generate_optimized_content(summarized_text): | |
"""Generate optimized video metadata using GPT.""" | |
prompt = f""" | |
Analyze the following summarized YouTube video transcript and: | |
1. Extract the top 10 keywords. | |
2. Generate an optimized title (less than 65 characters). | |
3. Create an engaging description. | |
4. Generate related tags for the video. | |
Summarized Transcript: | |
{summarized_text} | |
Provide the results in the following JSON format: | |
{{ | |
"keywords": ["keyword1", "keyword2", ..., "keyword10"], | |
"title": "Generated Title", | |
"description": "Generated Description", | |
"tags": ["tag1", "tag2", ..., "tag10"] | |
}} | |
""" | |
try: | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": "You are an SEO expert."}, | |
{"role": "user", "content": prompt} | |
] | |
) | |
return json.loads(response['choices'][0]['message']['content']) | |
except Exception as e: | |
print(f"Error generating metadata: {e}") | |
return {"error": "Unable to generate metadata."} | |
# Main Gradio Interface | |
def process_video(youtube_url): | |
"""Complete video processing workflow.""" | |
transcript = get_transcript(youtube_url) | |
if not transcript: | |
return {"error": "Could not fetch the transcript. Please try another video."} | |
summary = summarize_text(transcript) | |
optimized_content = generate_optimized_content(summary) | |
return optimized_content | |
iface = gr.Interface( | |
fn=process_video, | |
inputs=gr.Textbox(label="Enter YouTube URL"), | |
outputs=gr.JSON(label="Optimized Metadata"), | |
title="YouTube Video SEO Optimizer", | |
description="Paste a YouTube URL to generate an SEO-friendly title, description, tags, and keywords." | |
) | |
if __name__ == "__main__": | |
iface.launch() |