File size: 5,230 Bytes
c277c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import gradio as gr
import yt_dlp
import whisper
from pydub import AudioSegment
from transformers import pipeline
from youtube_transcript_api import YouTubeTranscriptApi
from urllib.parse import urlparse, parse_qs
import openai
import json
import tempfile
import re
import torch
from googleapiclient.discovery import build  # Add the import for Google API client


# Function to extract YouTube video ID
def extract_video_id(url):
    try:
        parsed_url = urlparse(url)
        if "youtube.com" in parsed_url.netloc:
            query_params = parse_qs(parsed_url.query)
            return query_params.get('v', [None])[0]
        elif "youtu.be" in parsed_url.netloc:
            return parsed_url.path.strip("/")
        return None
    except Exception:
        return None


# Function to get video duration
def get_video_duration(video_id, api_key):
    try:
        youtube = build("youtube", "v3", developerKey=api_key)
        request = youtube.videos().list(part="contentDetails", id=video_id)
        response = request.execute()
        if response["items"]:
            duration = response["items"][0]["contentDetails"]["duration"]
            match = re.match(r'PT(?:(\d+)H)?(?:(\d+)M)?(?:(\d+)S)?', duration)
            hours = int(match.group(1)) if match.group(1) else 0
            minutes = int(match.group(2)) if match.group(2) else 0
            seconds = int(match.group(3)) if match.group(3) else 0
            return hours * 60 + minutes + seconds / 60
        return None
    except Exception:
        return None


# Download and transcribe with Whisper
def download_and_transcribe_with_whisper(youtube_url):
    try:
        with tempfile.TemporaryDirectory() as temp_dir:
            temp_audio_file = os.path.join(temp_dir, "audio.mp3")

            ydl_opts = {
                'format': 'bestaudio/best',
                'outtmpl': temp_audio_file,
                'extractaudio': True,
            }

            with yt_dlp.YoutubeDL(ydl_opts) as ydl:
                ydl.download([youtube_url])

            audio = AudioSegment.from_file(temp_audio_file)
            wav_file = os.path.join(temp_dir, "audio.wav")
            audio.export(wav_file, format="wav")

            model = whisper.load_model("large")
            result = model.transcribe(wav_file)
            return result['text']
    except Exception:
        return None


# Function to summarize using Hugging Face
def summarize_text_huggingface(text):
    summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if torch.cuda.is_available() else -1)
    max_input_length = 1024
    chunk_overlap = 100
    text_chunks = [
        text[i:i + max_input_length]
        for i in range(0, len(text), max_input_length - chunk_overlap)
    ]
    summaries = [
        summarizer(chunk, max_length=100, min_length=50, do_sample=False)[0]['summary_text']
        for chunk in text_chunks
    ]
    return " ".join(summaries)


# Function to generate optimized content with OpenAI
def generate_optimized_content(api_key, summarized_transcript):
    openai.api_key = api_key
    prompt = f"""
    Analyze the following summarized YouTube video transcript and:
    1. Extract the top 10 keywords.
    2. Generate an optimized title (less than 65 characters).
    3. Create an engaging description.
    4. Generate related tags for the video.

    Summarized Transcript:
    {summarized_transcript}

    Provide the results in the following JSON format:
    {{
        "keywords": ["keyword1", "keyword2", ..., "keyword10"],
        "title": "Generated Title",
        "description": "Generated Description",
        "tags": ["tag1", "tag2", ..., "tag10"]
    }}
    """
    try:
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=[
                {"role": "system", "content": "You are an SEO expert."},
                {"role": "user", "content": prompt}
            ]
        )
        response_content = response['choices'][0]['message']['content']
        return json.loads(response_content)
    except Exception:
        return None


# Main Gradio function
def process_video(youtube_url, youtube_api_key, openai_api_key):
    video_id = extract_video_id(youtube_url)
    if not video_id:
        return "Invalid YouTube URL.", "", ""

    video_length = get_video_duration(video_id, youtube_api_key)
    if not video_length:
        return "Error fetching video duration.", "", ""

    transcript = download_and_transcribe_with_whisper(youtube_url)
    if not transcript:
        return "Error fetching transcript.", "", ""

    summary = summarize_text_huggingface(transcript)
    optimized_content = generate_optimized_content(openai_api_key, summary)

    return summary, json.dumps(optimized_content, indent=4), transcript


# Gradio Interface
youtube_api_key = os.getenv("YOUTUBE_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")

gr.Interface(
    fn=lambda youtube_url: process_video(youtube_url, youtube_api_key, openai_api_key),
    inputs="text",
    outputs=["text", "text", "text"],
    title="YouTube Transcript Summarizer",
    description="Enter a YouTube URL to extract, summarize, and optimize content.",
).launch()