Spaces:
Sleeping
Sleeping
File size: 6,421 Bytes
9823a49 94d337b c277c70 9823a49 c277c70 9823a49 c277c70 9823a49 c277c70 9823a49 c277c70 9823a49 c277c70 9823a49 c277c70 9823a49 c277c70 9823a49 c277c70 9823a49 c277c70 9823a49 c277c70 9823a49 c277c70 9823a49 c277c70 9823a49 c277c70 9823a49 c277c70 9823a49 c277c70 9823a49 c277c70 9823a49 c277c70 9823a49 c277c70 9823a49 c277c70 4eb77f8 c277c70 4eb77f8 9823a49 c277c70 9823a49 c277c70 9823a49 c277c70 9823a49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import googleapiclient.discovery
import re
import yt_dlp
import whisper
from pydub import AudioSegment
import tempfile
from transformers import pipeline
from youtube_transcript_api import YouTubeTranscriptApi
import torch
import openai
import json
from urllib.parse import urlparse, parse_qs
import os
import gradio as gr
# Ensure your API keys are set as environment variables
youtube_api_key = os.getenv("YOUTUBE_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")
openai.api_key = openai_api_key
def extract_video_id(url):
"""Extracts the video ID from a YouTube URL."""
try:
parsed_url = urlparse(url)
if "youtube.com" in parsed_url.netloc:
query_params = parse_qs(parsed_url.query)
return query_params.get('v', [None])[0]
elif "youtu.be" in parsed_url.netloc:
return parsed_url.path.strip("/")
else:
return None
except Exception as e:
return None
def get_video_duration(video_id, api_key):
"""Fetches the video duration in minutes."""
try:
youtube = googleapiclient.discovery.build("youtube", "v3", developerKey=api_key)
request = youtube.videos().list(part="contentDetails", id=video_id)
response = request.execute()
if response["items"]:
duration = response["items"][0]["contentDetails"]["duration"]
match = re.match(r'PT(?:(\d+)H)?(?:(\d+)M)?(?:(\d+)S)?', duration)
hours = int(match.group(1)) if match.group(1) else 0
minutes = int(match.group(2)) if match.group(2) else 0
seconds = int(match.group(3)) if match.group(3) else 0
return hours * 60 + minutes + seconds / 60
else:
return None
except Exception as e:
return None
def download_and_transcribe_with_whisper(youtube_url):
try:
with tempfile.TemporaryDirectory() as temp_dir:
temp_audio_file = os.path.join(temp_dir, "audio.mp3")
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': temp_audio_file,
'extractaudio': True,
'audioquality': 1,
}
# Download audio using yt-dlp
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([youtube_url])
# Convert to wav for Whisper
audio = AudioSegment.from_file(temp_audio_file)
wav_file = os.path.join(temp_dir, "audio.wav")
audio.export(wav_file, format="wav")
# Run Whisper transcription
model = whisper.load_model("large")
result = model.transcribe(wav_file)
transcript = result['text']
return transcript
except Exception as e:
return None
def get_transcript_from_youtube_api(video_id, video_length):
"""Fetches transcript using YouTube API if available."""
try:
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
for transcript in transcript_list:
if not transcript.is_generated:
segments = transcript.fetch()
return " ".join(segment['text'] for segment in segments)
if video_length > 15:
auto_transcript = transcript_list.find_generated_transcript(['en'])
if auto_transcript:
segments = auto_transcript.fetch()
return " ".join(segment['text'] for segment in segments)
return None
except Exception as e:
return None
def get_transcript(youtube_url):
"""Gets transcript from YouTube API or Whisper if unavailable."""
video_id = extract_video_id(youtube_url)
if not video_id:
return "Invalid or unsupported YouTube URL."
video_length = get_video_duration(video_id, youtube_api_key)
if video_length is not None:
transcript = get_transcript_from_youtube_api(video_id, video_length)
if transcript:
return transcript
return download_and_transcribe_with_whisper(youtube_url)
else:
return "Error fetching video duration."
def summarize_text_huggingface(text):
"""Summarizes text using a Hugging Face summarization model."""
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if torch.cuda.is_available() else -1)
max_input_length = 1024
chunk_overlap = 100
text_chunks = [
text[i:i + max_input_length]
for i in range(0, len(text), max_input_length - chunk_overlap)
]
summaries = [
summarizer(chunk, max_length=100, min_length=50, do_sample=False)[0]['summary_text']
for chunk in text_chunks
]
return " ".join(summaries)
def generate_optimized_content(summarized_transcript):
prompt = f"""
Analyze the following summarized YouTube video transcript and:
1. Extract the top 10 keywords.
2. Generate an optimized title (less than 65 characters).
3. Create an engaging description.
4. Generate related tags for the video.
Summarized Transcript:
{summarized_transcript}
Provide the results in the following JSON format:
{{
"keywords": ["keyword1", "keyword2", ..., "keyword10"],
"title": "Generated Title",
"description": "Generated Description",
"tags": ["tag1", "tag2", ..., "tag10"]
}}
"""
try:
response = openai.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello, how are you?"}
]
)
# Print the assistant's reply
print(response.choices[0].message.content)
except Exception as e:
return {"error": str(e)}
def process_video(youtube_url):
transcript = get_transcript(youtube_url)
if not transcript:
return "Could not fetch the transcript. Please try another video."
summary = summarize_text_huggingface(transcript)
optimized_content = generate_optimized_content(summary)
return optimized_content
iface = gr.Interface(
fn=process_video,
inputs=gr.Textbox(label="Enter a YouTube video URL"),
outputs=gr.JSON(label="Optimized Content"),
title="YouTube Video Optimization Tool",
description="Enter a YouTube URL to generate optimized titles, descriptions, and tags."
)
if __name__ == "__main__":
iface.launch()
|