Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
# app.py
|
2 |
# FastAPI backend for a Hugging Face Space (CPU tier)
|
3 |
# • Only MedGemma-4B-IT, no Parakeet, no tool-calling
|
4 |
-
# • Reads HF_TOKEN from Space secrets, uses /
|
5 |
# • /chat endpoint expects {"messages":[{"role":"user","content": "..."}]}
|
6 |
|
7 |
import os, pathlib, uuid
|
@@ -17,16 +17,16 @@ from transformers import pipeline
|
|
17 |
# ------------------------------------------------------------
|
18 |
# 1. Configure cache + authentication BEFORE loading models
|
19 |
# ------------------------------------------------------------
|
20 |
-
HOME_DIR = pathlib.Path.home()
|
21 |
-
CACHE_DIR = HOME_DIR / ".cache" / "huggingface"
|
22 |
-
CACHE_DIR.mkdir(parents=True, exist_ok=True) # ← always writable
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
os.environ["TRANSFORMERS_CACHE"] = str(CACHE_DIR)
|
26 |
|
27 |
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_TOKEN") # fine-grained read token
|
28 |
|
29 |
-
|
30 |
# ------------------------------------------------------------
|
31 |
# 2. Simple Pydantic request model
|
32 |
# ------------------------------------------------------------
|
@@ -47,17 +47,21 @@ medgemma_pipe = None
|
|
47 |
def get_medgemma():
|
48 |
global medgemma_pipe
|
49 |
if medgemma_pipe is None:
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
61 |
return medgemma_pipe
|
62 |
|
63 |
# ------------------------------------------------------------
|
@@ -87,67 +91,88 @@ SYSTEM_PROMPT = (
|
|
87 |
# ------------------------------------------------------------
|
88 |
@app.post("/chat")
|
89 |
async def chat(request: Request):
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
pipe = get_medgemma()
|
96 |
-
if pipe is None:
|
97 |
return JSONResponse(
|
98 |
{
|
99 |
"id": f"chatcmpl-{uuid.uuid4().hex[:8]}",
|
100 |
"choices": [{
|
101 |
"message": {
|
102 |
"role": "assistant",
|
103 |
-
"content":
|
104 |
-
"Check your gated-model access and HF_TOKEN.",
|
105 |
}
|
106 |
-
}]
|
107 |
-
}
|
108 |
-
status_code=503,
|
109 |
)
|
110 |
-
|
111 |
-
try:
|
112 |
-
result = pipe(
|
113 |
-
prompt,
|
114 |
-
max_new_tokens=256,
|
115 |
-
do_sample=True,
|
116 |
-
temperature=0.7,
|
117 |
-
pad_token_id=pipe.tokenizer.eos_token_id,
|
118 |
-
return_full_text=False,
|
119 |
-
)
|
120 |
-
assistant_text = result[0]["generated_text"].strip() if result else "No response."
|
121 |
except Exception as e:
|
122 |
-
print("
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
)
|
136 |
|
137 |
# ------------------------------------------------------------
|
138 |
# 7. Health endpoint
|
139 |
# ------------------------------------------------------------
|
|
|
|
|
|
|
|
|
140 |
@app.get("/health")
|
141 |
async def health():
|
142 |
return {
|
143 |
"status": "ok",
|
144 |
"model_loaded": medgemma_pipe is not None,
|
145 |
"hf_token_present": bool(HF_TOKEN),
|
|
|
146 |
}
|
147 |
|
148 |
# ------------------------------------------------------------
|
149 |
-
# 8. For local dev (won
|
150 |
# ------------------------------------------------------------
|
151 |
if __name__ == "__main__":
|
152 |
import uvicorn
|
153 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
1 |
# app.py
|
2 |
# FastAPI backend for a Hugging Face Space (CPU tier)
|
3 |
# • Only MedGemma-4B-IT, no Parakeet, no tool-calling
|
4 |
+
# • Reads HF_TOKEN from Space secrets, uses /tmp for writable cache
|
5 |
# • /chat endpoint expects {"messages":[{"role":"user","content": "..."}]}
|
6 |
|
7 |
import os, pathlib, uuid
|
|
|
17 |
# ------------------------------------------------------------
|
18 |
# 1. Configure cache + authentication BEFORE loading models
|
19 |
# ------------------------------------------------------------
|
|
|
|
|
|
|
20 |
|
21 |
+
# Use /tmp for cache in HF Spaces (always writable)
|
22 |
+
CACHE_DIR = pathlib.Path("/tmp/hf_cache")
|
23 |
+
CACHE_DIR.mkdir(parents=True, exist_ok=True)
|
24 |
+
|
25 |
+
os.environ["HF_HOME"] = str(CACHE_DIR)
|
26 |
os.environ["TRANSFORMERS_CACHE"] = str(CACHE_DIR)
|
27 |
|
28 |
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_TOKEN") # fine-grained read token
|
29 |
|
|
|
30 |
# ------------------------------------------------------------
|
31 |
# 2. Simple Pydantic request model
|
32 |
# ------------------------------------------------------------
|
|
|
47 |
def get_medgemma():
|
48 |
global medgemma_pipe
|
49 |
if medgemma_pipe is None:
|
50 |
+
try:
|
51 |
+
print("Loading MedGemma-4B-IT …")
|
52 |
+
medgemma_pipe = pipeline(
|
53 |
+
"text-generation",
|
54 |
+
model="google/medgemma-4b-it",
|
55 |
+
torch_dtype=DTYPE,
|
56 |
+
device=0 if torch.cuda.is_available() else -1,
|
57 |
+
token=HF_TOKEN, # authenticate to gated repo
|
58 |
+
cache_dir=CACHE_DIR,
|
59 |
+
trust_remote_code=True,
|
60 |
+
)
|
61 |
+
print("✅ MedGemma loaded successfully")
|
62 |
+
except Exception as e:
|
63 |
+
print(f"❌ Error loading MedGemma: {e}")
|
64 |
+
medgemma_pipe = None
|
65 |
return medgemma_pipe
|
66 |
|
67 |
# ------------------------------------------------------------
|
|
|
91 |
# ------------------------------------------------------------
|
92 |
@app.post("/chat")
|
93 |
async def chat(request: Request):
|
94 |
+
try:
|
95 |
+
body = await request.json()
|
96 |
+
payload = ChatCompletionRequest(**body)
|
97 |
+
user_msg = payload.messages[-1].content or ""
|
98 |
+
prompt = f"{SYSTEM_PROMPT}\n\n{user_msg}\n\nRadiology Report:\n"
|
99 |
+
|
100 |
+
pipe = get_medgemma()
|
101 |
+
if pipe is None:
|
102 |
+
return JSONResponse(
|
103 |
+
{
|
104 |
+
"id": f"chatcmpl-{uuid.uuid4().hex[:8]}",
|
105 |
+
"choices": [{
|
106 |
+
"message": {
|
107 |
+
"role": "assistant",
|
108 |
+
"content": "MedGemma model is unavailable. "
|
109 |
+
"Check your gated-model access and HF_TOKEN.",
|
110 |
+
}
|
111 |
+
}],
|
112 |
+
},
|
113 |
+
status_code=503,
|
114 |
+
)
|
115 |
+
|
116 |
+
try:
|
117 |
+
result = pipe(
|
118 |
+
prompt,
|
119 |
+
max_new_tokens=256,
|
120 |
+
do_sample=True,
|
121 |
+
temperature=0.7,
|
122 |
+
pad_token_id=pipe.tokenizer.eos_token_id,
|
123 |
+
return_full_text=False,
|
124 |
+
)
|
125 |
+
assistant_text = result[0]["generated_text"].strip() if result else "No response."
|
126 |
+
except Exception as e:
|
127 |
+
print("Generation error:", e)
|
128 |
+
assistant_text = "Error generating response. Please retry later."
|
129 |
|
|
|
|
|
130 |
return JSONResponse(
|
131 |
{
|
132 |
"id": f"chatcmpl-{uuid.uuid4().hex[:8]}",
|
133 |
"choices": [{
|
134 |
"message": {
|
135 |
"role": "assistant",
|
136 |
+
"content": assistant_text,
|
|
|
137 |
}
|
138 |
+
}]
|
139 |
+
}
|
|
|
140 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
except Exception as e:
|
142 |
+
print(f"Chat endpoint error: {e}")
|
143 |
+
return JSONResponse(
|
144 |
+
{
|
145 |
+
"id": f"chatcmpl-{uuid.uuid4().hex[:8]}",
|
146 |
+
"choices": [{
|
147 |
+
"message": {
|
148 |
+
"role": "assistant",
|
149 |
+
"content": "Server error. Please try again later.",
|
150 |
+
}
|
151 |
+
}]
|
152 |
+
},
|
153 |
+
status_code=500
|
154 |
+
)
|
|
|
155 |
|
156 |
# ------------------------------------------------------------
|
157 |
# 7. Health endpoint
|
158 |
# ------------------------------------------------------------
|
159 |
+
@app.get("/")
|
160 |
+
async def root():
|
161 |
+
return {"status": "healthy", "message": "MedGemma API is running"}
|
162 |
+
|
163 |
@app.get("/health")
|
164 |
async def health():
|
165 |
return {
|
166 |
"status": "ok",
|
167 |
"model_loaded": medgemma_pipe is not None,
|
168 |
"hf_token_present": bool(HF_TOKEN),
|
169 |
+
"cache_dir": str(CACHE_DIR),
|
170 |
}
|
171 |
|
172 |
# ------------------------------------------------------------
|
173 |
+
# 8. For local dev (won't run inside Space runtime)
|
174 |
# ------------------------------------------------------------
|
175 |
if __name__ == "__main__":
|
176 |
import uvicorn
|
177 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
178 |
+
|