AlphamanKing commited on
Commit
ef82e95
·
verified ·
1 Parent(s): 2ba8a8a

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +61 -13
  2. app.py +72 -54
  3. requirements.txt +4 -1
README.md CHANGED
@@ -1,13 +1,61 @@
1
- ---
2
- title: Mental Health Sentiment
3
- emoji: 💬
4
- colorFrom: yellow
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 5.0.1
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
- An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Mental Health Sentiment Analysis API
2
+
3
+ This Hugging Face Space provides an API endpoint for mental health-related sentiment analysis using the RoBERTa model fine-tuned on emotion detection.
4
+
5
+ ## Model Details
6
+ - Base Model: RoBERTa
7
+ - Fine-tuned Version: SamLowe/roberta-base-go_emotions
8
+ - Task: Multi-label emotion classification
9
+ - Input: Text
10
+ - Output: Emotion probabilities and processed mental health context
11
+
12
+ ## API Usage
13
+
14
+ ### Using Python
15
+ ```python
16
+ import requests
17
+
18
+ API_URL = "https://your-space-name.hf.space/api/predict"
19
+ response = requests.post(API_URL, json={"inputs": "your text here"})
20
+ print(response.json())
21
+ ```
22
+
23
+ ### Using JavaScript/Node.js
24
+ ```javascript
25
+ const response = await fetch("https://your-space-name.hf.space/api/predict", {
26
+ method: "POST",
27
+ headers: { "Content-Type": "application/json" },
28
+ body: JSON.stringify({ inputs: "your text here" })
29
+ });
30
+ const result = await response.json();
31
+ ```
32
+
33
+ ## Response Format
34
+ ```json
35
+ {
36
+ "emotions": {
37
+ "joy": 0.8,
38
+ "sadness": 0.1,
39
+ "anger": 0.05,
40
+ // ... other emotions
41
+ },
42
+ "primaryEmotion": "joy",
43
+ "emotionalState": {
44
+ "state": "joy",
45
+ "intensity": "High",
46
+ "needsAttention": false,
47
+ "description": "Detected joy with 80% confidence"
48
+ },
49
+ "success": true,
50
+ "needsAttention": false
51
+ }
52
+ ```
53
+
54
+ ## Error Handling
55
+ If there's an error, the API will return:
56
+ ```json
57
+ {
58
+ "error": "Error message here",
59
+ "success": false
60
+ }
61
+ ```
app.py CHANGED
@@ -1,64 +1,82 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
+ import numpy as np
4
 
5
+ # Initialize the sentiment classifier
6
+ classifier = pipeline(
7
+ "text-classification",
8
+ model="SamLowe/roberta-base-go_emotions",
9
+ top_k=None # Return all emotions
10
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
+ def process_emotions(emotions):
13
+ """Convert raw emotions to our application's format"""
14
+ # Convert to dictionary format
15
+ emotion_dict = {item['label']: float(item['score']) for item in emotions}
16
+
17
+ # Find primary emotion
18
+ primary_emotion = max(emotion_dict.items(), key=lambda x: x[1])
19
+
20
+ # Calculate intensity
21
+ max_score = primary_emotion[1]
22
+ intensity = 'High' if max_score > 0.66 else 'Medium' if max_score > 0.33 else 'Low'
23
+
24
+ # Check if needs attention
25
+ needs_attention = (
26
+ primary_emotion[0] in ['anger', 'anxiety', 'depression']
27
+ and max_score > 0.5
28
+ )
29
+
30
+ return {
31
+ 'emotions': emotion_dict,
32
+ 'primaryEmotion': primary_emotion[0],
33
+ 'emotionalState': {
34
+ 'state': primary_emotion[0],
35
+ 'intensity': intensity,
36
+ 'needsAttention': needs_attention,
37
+ 'description': f"Detected {primary_emotion[0]} with {round(max_score * 100)}% confidence"
38
+ },
39
+ 'success': True,
40
+ 'needsAttention': needs_attention
41
+ }
42
 
43
+ def analyze_text(text):
44
+ """Analyze text and return processed emotions"""
45
+ if not text or not text.strip():
46
+ return {
47
+ 'error': 'Please provide some text to analyze',
48
+ 'success': False
49
+ }
50
+
51
+ try:
52
+ # Get raw emotions from model
53
+ emotions = classifier(text)
54
+
55
+ # Process emotions into our format
56
+ result = process_emotions(emotions[0])
57
+
58
+ return result
59
+ except Exception as e:
60
+ return {
61
+ 'error': str(e),
62
+ 'success': False
63
+ }
64
 
65
+ # Create Gradio interface
66
+ demo = gr.Interface(
67
+ fn=analyze_text,
68
+ inputs=gr.Textbox(label="Enter text to analyze", lines=3),
69
+ outputs=gr.JSON(label="Sentiment Analysis Results"),
70
+ title="Mental Health Sentiment Analysis",
71
+ description="Analyzes text for emotions related to mental health using the RoBERTa model.",
72
+ examples=[
73
+ ["I'm feeling really anxious about my upcoming presentation"],
74
+ ["Today was a great day, I accomplished all my goals!"],
75
+ ["I've been feeling down and unmotivated lately"],
 
 
 
 
 
76
  ],
77
+ allow_flagging="never"
78
  )
79
 
80
+ # Launch the app
81
  if __name__ == "__main__":
82
  demo.launch()
requirements.txt CHANGED
@@ -1 +1,4 @@
1
- huggingface_hub==0.25.2
 
 
 
 
1
+ transformers==4.36.2
2
+ torch==2.1.2
3
+ gradio==4.12.0
4
+ numpy==1.26.3