import os import torch from fastapi import FastAPI from transformers import AutoTokenizer, AutoModelForCausalLM from pydantic import BaseModel import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) app = FastAPI() model_name = "google/gemma-2-2b-it" tokenizer = None model = None try: logger.info(f"Loading model: {model_name}") tokenizer = AutoTokenizer.from_pretrained(model_name, token=os.getenv("HF_TOKEN")) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, # メモリ削減 device_map="cpu", # GPU利用不可 token=os.getenv("HF_TOKEN"), low_cpu_mem_usage=True ) logger.info("Model loaded successfully") except Exception as e: logger.error(f"Model load error: {e}") raise class TextInput(BaseModel): text: str max_length: int = 50 @app.post("/generate") async def generate_text(input: TextInput): try: logger.info(f"Generating text for input: {input.text}") inputs = tokenizer(input.text, return_tensors="pt", max_length=512, truncation=True).to("cpu") outputs = model.generate(**inputs, max_length=input.max_length) result = tokenizer.decode(outputs[0], skip_special_tokens=True) logger.info(f"Generated text: {result}") return {"generated_text": result} except Exception as e: logger.error(f"Generation error: {e}") return {"error": str(e)}