Spaces:
Runtime error
Runtime error
import openai | |
import streamlit as st | |
import os | |
from langchain.document_loaders import PyPDFLoader | |
from langchain import PromptTemplate | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains.summarize import load_summarize_chain | |
from langchain.chat_models import ChatOpenAI | |
openai.api_key = os.environ["OPENAI_API_KEY"] | |
def setup_documents(pdf_file_path,chunk_size,chunk_overlap): | |
loader = PyPDFLoader(pdf_file_path) | |
docs_raw = loader.load() | |
docs_raw_text = [doc.page_content for doc in docs_raw] | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap) | |
docs = text_splitter.create_documents(docs_raw_text) | |
return docs | |
def custom_summary(docs, llm, custom_prompt, chain_type, num_summaries): | |
custom_prompt = custom_prompt + """:\n {text}""" | |
COMBINE_PROMPT = PromptTemplate(template=custom_prompt, input_variables = ["text"]) | |
MAP_PROMPT = PromptTemplate(template="Summarize:\n{text}", input_variables=["text"]) | |
if chain_type == "map_reduce": | |
chain = load_summarize_chain(llm,chain_type=chain_type, | |
map_prompt=MAP_PROMPT, | |
combine_prompt=COMBINE_PROMPT) | |
else: | |
chain = load_summarize_chain(llm,chain_type=chain_type) | |
summaries = [] | |
for i in range(num_summaries): | |
summary_output = chain({"input_documents": docs}, return_only_outputs=True)["output_text"] | |
summaries.append(summary_output) | |
return summaries | |
def color_chunks(text: str, chunk_size: int, overlap_size: int) -> str: | |
overlap_color = "#808080" | |
chunk_colors = ["#a8d08d", "#c6dbef", "#e6550d", "#fd8d3c", "#fdae6b", "#fdd0a2"] # Different shades of green for chunks | |
colored_text = "" | |
overlap = "" | |
color_index = 0 | |
for i in range(0, len(text), chunk_size-overlap_size): | |
chunk = text[i:i+chunk_size] | |
if overlap: | |
colored_text += f'<mark style="background-color: {overlap_color};">{overlap}</mark>' | |
chunk = chunk[len(overlap):] | |
colored_text += f'<mark style="background-color: {chunk_colors[color_index]};">{chunk}</mark>' | |
color_index = (color_index + 1) % len(chunk_colors) | |
overlap = text[i+chunk_size-overlap_size:i+chunk_size] | |
return colored_text | |
def main(): | |
st.set_page_config(layout="wide") | |
st.title("Custom Summarization App") | |
llm = st.sidebar.selectbox("LLM",["ChatGPT", "GPT4", "Other (open source in the future)"]) | |
chain_type = st.sidebar.selectbox("Chain Type", ["map_reduce", "stuff", "refine"]) | |
chunk_size = st.sidebar.slider("Chunk Size", min_value=20, max_value = 10000, | |
step=10, value=2000) | |
chunk_overlap = st.sidebar.slider("Chunk Overlap", min_value=5, max_value = 5000, | |
step=10, value=200) | |
if st.sidebar.checkbox("Debug chunk size"): | |
st.header("Interactive Text Chunk Visualization") | |
text_input = st.text_area("Input Text", "This is a test text to showcase the functionality of the interactive text chunk visualizer.") | |
# Set the minimum to 1, the maximum to 5000 and default to 100 | |
html_code = color_chunks(text_input, chunk_size, chunk_overlap) | |
st.markdown(html_code, unsafe_allow_html=True) | |
else: | |
user_prompt = st.text_input("Enter the custom summary prompt") | |
pdf_file_path = st.text_input("Enther the pdf file path") | |
temperature = st.sidebar.number_input("Set the ChatGPT Temperature", | |
min_value = 0.0, | |
max_value=1.0, | |
step=0.1, | |
value=0.5) | |
num_summaries = st.sidebar.number_input("Number of summaries", | |
min_value = 1, | |
max_value = 10, | |
step = 1, | |
value=1) | |
if pdf_file_path != "": | |
docs = setup_documents(pdf_file_path, chunk_size, chunk_overlap) | |
st.write("PDF loaded successfully") | |
if llm=="ChatGPT": | |
llm = ChatOpenAI(temperature=temperature) | |
elif llm=="GPT4": | |
llm = ChatOpenAI(model_name="gpt-4",temperature=temperature) | |
else: | |
st.write("Using ChatGPT while open source models are not implemented!") | |
llm = ChatOpenAI(temperature=temperature) | |
if st.button("Summarize"): | |
result = custom_summary(docs, llm, user_prompt, chain_type, num_summaries) | |
st.write("Summary:") | |
for summary in result: | |
st.write(summary) | |
if __name__=="__main__": | |
main() | |