Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -11,18 +11,35 @@ from typing import Dict, List, Any, Optional
|
|
11 |
from transformers.pipelines import pipeline
|
12 |
|
13 |
# Initialize the model
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Function to generate embeddings from an image
|
17 |
def generate_embedding(image):
|
18 |
if image is None:
|
19 |
-
return
|
|
|
|
|
|
|
20 |
|
21 |
# Convert to PIL Image if needed
|
22 |
if not isinstance(image, Image.Image):
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
|
25 |
try:
|
|
|
|
|
|
|
|
|
26 |
# Generate embedding using the transformers pipeline
|
27 |
result = model(image)
|
28 |
|
@@ -47,14 +64,14 @@ def generate_embedding(image):
|
|
47 |
embedding_list = list(result)
|
48 |
else:
|
49 |
print("Result is None")
|
50 |
-
return
|
51 |
except:
|
52 |
print(f"Couldn't convert result of type {type(result)} to list")
|
53 |
-
return
|
54 |
|
55 |
# Ensure we have a valid embedding list
|
56 |
if embedding_list is None:
|
57 |
-
return
|
58 |
|
59 |
# Calculate embedding dimension
|
60 |
embedding_dim = len(embedding_list)
|
@@ -65,7 +82,7 @@ def generate_embedding(image):
|
|
65 |
}, f"Dimension: {embedding_dim}"
|
66 |
except Exception as e:
|
67 |
print(f"Error generating embedding: {str(e)}")
|
68 |
-
return
|
69 |
|
70 |
# Function to generate embeddings from an image URL
|
71 |
def embed_image_from_url(image_url):
|
@@ -101,7 +118,10 @@ app = gr.Interface(
|
|
101 |
],
|
102 |
title="Nomic Vision Embedding Model (nomic-ai/nomic-embed-vision-v1.5)",
|
103 |
description="Upload an image to generate embeddings using the Nomic Vision model.",
|
104 |
-
examples=[
|
|
|
|
|
|
|
105 |
allow_flagging="never"
|
106 |
)
|
107 |
|
|
|
11 |
from transformers.pipelines import pipeline
|
12 |
|
13 |
# Initialize the model
|
14 |
+
try:
|
15 |
+
model = pipeline("image-feature-extraction", model="nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
|
16 |
+
model_loaded = True
|
17 |
+
except Exception as e:
|
18 |
+
print(f"Error loading model: {str(e)}")
|
19 |
+
model = None
|
20 |
+
model_loaded = False
|
21 |
|
22 |
# Function to generate embeddings from an image
|
23 |
def generate_embedding(image):
|
24 |
if image is None:
|
25 |
+
return {"error": "No image provided"}, "No image provided"
|
26 |
+
|
27 |
+
if not model_loaded:
|
28 |
+
return {"error": "Model not loaded properly"}, "Error: Model not loaded properly"
|
29 |
|
30 |
# Convert to PIL Image if needed
|
31 |
if not isinstance(image, Image.Image):
|
32 |
+
try:
|
33 |
+
image = Image.fromarray(image)
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Error converting image: {str(e)}")
|
36 |
+
return {"error": f"Invalid image format: {str(e)}"}, f"Error: Invalid image format"
|
37 |
|
38 |
try:
|
39 |
+
# Check if model is loaded before calling it
|
40 |
+
if model is None:
|
41 |
+
return {"error": "Model not loaded properly"}, "Error: Model not loaded properly"
|
42 |
+
|
43 |
# Generate embedding using the transformers pipeline
|
44 |
result = model(image)
|
45 |
|
|
|
64 |
embedding_list = list(result)
|
65 |
else:
|
66 |
print("Result is None")
|
67 |
+
return {"error": "Failed to generate embedding"}, "Failed to generate embedding"
|
68 |
except:
|
69 |
print(f"Couldn't convert result of type {type(result)} to list")
|
70 |
+
return {"error": "Failed to process embedding"}, "Failed to process embedding"
|
71 |
|
72 |
# Ensure we have a valid embedding list
|
73 |
if embedding_list is None:
|
74 |
+
return {"error": "Failed to generate embedding"}, "Failed to generate embedding"
|
75 |
|
76 |
# Calculate embedding dimension
|
77 |
embedding_dim = len(embedding_list)
|
|
|
82 |
}, f"Dimension: {embedding_dim}"
|
83 |
except Exception as e:
|
84 |
print(f"Error generating embedding: {str(e)}")
|
85 |
+
return {"error": f"Error generating embedding: {str(e)}"}, f"Error: {str(e)}"
|
86 |
|
87 |
# Function to generate embeddings from an image URL
|
88 |
def embed_image_from_url(image_url):
|
|
|
118 |
],
|
119 |
title="Nomic Vision Embedding Model (nomic-ai/nomic-embed-vision-v1.5)",
|
120 |
description="Upload an image to generate embeddings using the Nomic Vision model.",
|
121 |
+
examples=[
|
122 |
+
["nomic/examples/example1.jpg"],
|
123 |
+
["nomic/examples/example2.jpg"]
|
124 |
+
],
|
125 |
allow_flagging="never"
|
126 |
)
|
127 |
|