Spaces:
Running
Running
Add picture preprocessing
Browse files
app.py
CHANGED
@@ -1,39 +1,68 @@
|
|
1 |
import torch
|
2 |
import torch.nn.functional as F
|
3 |
-
from transformers import
|
|
|
|
|
4 |
import gradio as gr
|
5 |
import spaces
|
|
|
6 |
|
|
|
7 |
processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5")
|
8 |
vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
|
9 |
|
10 |
-
def
|
11 |
"""
|
12 |
-
|
13 |
|
14 |
Args:
|
15 |
-
image (PIL.Image.Image
|
16 |
|
17 |
Returns:
|
18 |
-
|
19 |
"""
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
img_emb = vision_model(**inputs).last_hidden_state
|
24 |
img_embeddings = F.normalize(img_emb[:, 0], p=2, dim=1)
|
25 |
|
26 |
-
return img_embeddings[0].tolist()
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
|
|
29 |
|
30 |
-
with gr.Blocks() as demo:
|
31 |
-
img = gr.Image();
|
32 |
-
out = gr.Text();
|
33 |
-
|
34 |
-
btn = gr.Button("Get Embeddings")
|
35 |
-
btn.click(ImgEmbed, [img], [out])
|
36 |
-
|
37 |
-
|
38 |
if __name__ == "__main__":
|
39 |
-
demo.launch(
|
|
|
1 |
import torch
|
2 |
import torch.nn.functional as F
|
3 |
+
from transformers import AutoModel, AutoImageProcessor
|
4 |
+
from PIL import Image
|
5 |
+
from rembg import remove
|
6 |
import gradio as gr
|
7 |
import spaces
|
8 |
+
import io
|
9 |
|
10 |
+
# Load the Nomic embed model
|
11 |
processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5")
|
12 |
vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
|
13 |
|
14 |
+
def focus_on_subject(image: Image.Image) -> Image.Image:
|
15 |
"""
|
16 |
+
Remove background and crop to the main object using rembg.
|
17 |
|
18 |
Args:
|
19 |
+
image (PIL.Image.Image): Input image.
|
20 |
|
21 |
Returns:
|
22 |
+
PIL.Image.Image: Cropped image with background removed.
|
23 |
"""
|
24 |
+
image = image.convert("RGB")
|
25 |
+
|
26 |
+
# Remove background
|
27 |
+
img_bytes = io.BytesIO()
|
28 |
+
image.save(img_bytes, format="PNG")
|
29 |
+
img_bytes = img_bytes.getvalue()
|
30 |
+
result_bytes = remove(img_bytes)
|
31 |
+
|
32 |
+
result_image = Image.open(io.BytesIO(result_bytes)).convert("RGBA")
|
33 |
+
bbox = result_image.getbbox()
|
34 |
+
cropped = result_image.crop(bbox) if bbox else result_image
|
35 |
+
|
36 |
+
return cropped.convert("RGB")
|
37 |
|
38 |
+
def ImgEmbed(image: Image.Image):
|
39 |
+
"""
|
40 |
+
Preprocess image, generate normalized embedding, and return both embedding and processed image.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
image (PIL.Image.Image): Input image.
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
Tuple: (embedding list, processed image)
|
47 |
+
"""
|
48 |
+
focused_image = focus_on_subject(image)
|
49 |
+
inputs = processor(focused_image, return_tensors="pt")
|
50 |
img_emb = vision_model(**inputs).last_hidden_state
|
51 |
img_embeddings = F.normalize(img_emb[:, 0], p=2, dim=1)
|
52 |
|
53 |
+
return img_embeddings[0].tolist(), focused_image
|
54 |
|
55 |
+
# Gradio UI
|
56 |
+
with gr.Blocks() as demo:
|
57 |
+
with gr.Row():
|
58 |
+
with gr.Column():
|
59 |
+
img = gr.Image(label="Upload Image")
|
60 |
+
btn = gr.Button("Get Embeddings")
|
61 |
+
with gr.Column():
|
62 |
+
pre_img = gr.Image(label="Preprocessed Image")
|
63 |
+
out = gr.Text(label="Image Embedding")
|
64 |
|
65 |
+
btn.click(ImgEmbed, inputs=[img], outputs=[out, pre_img])
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
if __name__ == "__main__":
|
68 |
+
demo.launch()
|