AkinyemiAra commited on
Commit
bf12e57
·
verified ·
1 Parent(s): 3c6498f

Add picture preprocessing

Browse files
Files changed (1) hide show
  1. app.py +46 -17
app.py CHANGED
@@ -1,39 +1,68 @@
1
  import torch
2
  import torch.nn.functional as F
3
- from transformers import AutoTokenizer, AutoModel, AutoImageProcessor
 
 
4
  import gradio as gr
5
  import spaces
 
6
 
 
7
  processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5")
8
  vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
9
 
10
- def ImgEmbed(image):
11
  """
12
- Generate normalized embedding vector for the uploaded image.
13
 
14
  Args:
15
- image (PIL.Image.Image or np.ndarray): Input image uploaded by the user.
16
 
17
  Returns:
18
- list[float]: A normalized image embedding vector representing the input image.
19
  """
20
- print(image);
21
- inputs = processor(image, return_tensors="pt")
 
 
 
 
 
 
 
 
 
 
 
22
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  img_emb = vision_model(**inputs).last_hidden_state
24
  img_embeddings = F.normalize(img_emb[:, 0], p=2, dim=1)
25
 
26
- return img_embeddings[0].tolist();
27
 
 
 
 
 
 
 
 
 
 
28
 
 
29
 
30
- with gr.Blocks() as demo:
31
- img = gr.Image();
32
- out = gr.Text();
33
-
34
- btn = gr.Button("Get Embeddings")
35
- btn.click(ImgEmbed, [img], [out])
36
-
37
-
38
  if __name__ == "__main__":
39
- demo.launch(mcp_server=True)
 
1
  import torch
2
  import torch.nn.functional as F
3
+ from transformers import AutoModel, AutoImageProcessor
4
+ from PIL import Image
5
+ from rembg import remove
6
  import gradio as gr
7
  import spaces
8
+ import io
9
 
10
+ # Load the Nomic embed model
11
  processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5")
12
  vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
13
 
14
+ def focus_on_subject(image: Image.Image) -> Image.Image:
15
  """
16
+ Remove background and crop to the main object using rembg.
17
 
18
  Args:
19
+ image (PIL.Image.Image): Input image.
20
 
21
  Returns:
22
+ PIL.Image.Image: Cropped image with background removed.
23
  """
24
+ image = image.convert("RGB")
25
+
26
+ # Remove background
27
+ img_bytes = io.BytesIO()
28
+ image.save(img_bytes, format="PNG")
29
+ img_bytes = img_bytes.getvalue()
30
+ result_bytes = remove(img_bytes)
31
+
32
+ result_image = Image.open(io.BytesIO(result_bytes)).convert("RGBA")
33
+ bbox = result_image.getbbox()
34
+ cropped = result_image.crop(bbox) if bbox else result_image
35
+
36
+ return cropped.convert("RGB")
37
 
38
+ def ImgEmbed(image: Image.Image):
39
+ """
40
+ Preprocess image, generate normalized embedding, and return both embedding and processed image.
41
+
42
+ Args:
43
+ image (PIL.Image.Image): Input image.
44
+
45
+ Returns:
46
+ Tuple: (embedding list, processed image)
47
+ """
48
+ focused_image = focus_on_subject(image)
49
+ inputs = processor(focused_image, return_tensors="pt")
50
  img_emb = vision_model(**inputs).last_hidden_state
51
  img_embeddings = F.normalize(img_emb[:, 0], p=2, dim=1)
52
 
53
+ return img_embeddings[0].tolist(), focused_image
54
 
55
+ # Gradio UI
56
+ with gr.Blocks() as demo:
57
+ with gr.Row():
58
+ with gr.Column():
59
+ img = gr.Image(label="Upload Image")
60
+ btn = gr.Button("Get Embeddings")
61
+ with gr.Column():
62
+ pre_img = gr.Image(label="Preprocessed Image")
63
+ out = gr.Text(label="Image Embedding")
64
 
65
+ btn.click(ImgEmbed, inputs=[img], outputs=[out, pre_img])
66
 
 
 
 
 
 
 
 
 
67
  if __name__ == "__main__":
68
+ demo.launch()