AkinyemiAra's picture
Update app.py
6b3c2db verified
import torch
import torch.nn.functional as F
from transformers import AutoModel, AutoImageProcessor
from PIL import Image
from rembg import remove
import gradio as gr
import spaces
import io
import numpy as np
# Load the Nomic embed model
processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5")
vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
def focus_on_subject(image: Image.Image) -> Image.Image:
"""
Remove background and crop to the main object using rembg.
Args:
image (PIL.Image.Image): Input image.
Returns:
PIL.Image.Image: Cropped image with background removed.
"""
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
image = image.convert("RGB")
# Remove background
img_bytes = io.BytesIO()
image.save(img_bytes, format="PNG")
img_bytes = img_bytes.getvalue()
result_bytes = remove(img_bytes)
result_image = Image.open(io.BytesIO(result_bytes)).convert("RGBA")
bbox = result_image.getbbox()
cropped = result_image.crop(bbox) if bbox else result_image
return cropped.convert("RGB")
def ImgEmbed(image: Image.Image)-> list[float]:
"""
Preprocess image, generate normalized embedding, and return both embedding and processed image.
Args:
image (PIL.Image.Image): Input image.
Returns:
List[float]: Embedding vector.
"""
focused_image = focus_on_subject(image)
inputs = processor(focused_image, return_tensors="pt")
img_emb = vision_model(**inputs).last_hidden_state
img_embeddings = F.normalize(img_emb[:, 0], p=2, dim=1)
return img_embeddings[0].tolist()
# Gradio UI
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
img = gr.Image(label="Upload Image")
btn = gr.Button("Get Embeddings")
with gr.Column():
# pre_img = gr.Image(label="Preprocessed Image")
out = gr.Text(label="Image Embedding")
btn.click(ImgEmbed, inputs=[img], outputs=[out])
if __name__ == "__main__":
demo.launch(mcp_server=True)