File size: 8,840 Bytes
abd88b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import threading
import gradio as gr

image_model_id = "Qwen/Qwen-VL-Chat-Int4"
image_tokenizer = AutoTokenizer.from_pretrained(image_model_id, trust_remote_code=True)

image_model = AutoModelForCausalLM.from_pretrained(image_model_id, device_map="cuda", trust_remote_code=True).eval()

# Load model and tokenizer
code_model_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
code_tokenizer = AutoTokenizer.from_pretrained(code_model_id, trust_remote_code=True)
code_tokenizer.pad_token_id = code_tokenizer.eos_token_id 
code_model = AutoModelForCausalLM.from_pretrained(
    code_model_id,
    torch_dtype="float16",
    device_map="auto"
).eval()


stop_image_generation = threading.Event()
stop_code_generation = threading.Event()

def generate_response_image(uploaded_image, user_prompt, temperature, top_p, max_new_tokens):
    stop_image_generation.clear()
    temp_path = "/tmp/temp_image.png"
    uploaded_image.save(temp_path)

    image_sys_prompt = (
        "You are a helpful assistant that describes images very concisely. "
         "Provide a one-sentence summary of the image in less than 15 words. "
         "Use simple, direct language."
    )
    
    # Compose prompt using tokenizer's helper
    query_text = image_tokenizer.from_list_format([
        {"image": temp_path},
        {"text": f"<|system|>\n{image_sys_prompt}\n<|end|>"},
        {"text": f"<|user|>\n{user_prompt}\n<|end|>"},
        {"text": "<|assistant|>"}
    ])
    
    # Tokenize the input text -> get input_ids and attention_mask tensors
    inputs = image_tokenizer(query_text, return_tensors="pt").to("cuda")
    streamer = TextIteratorStreamer(image_tokenizer, skip_prompt=True, skip_special_tokens=True)

    generation_kwargs = dict(
        **inputs,
        streamer=streamer,
        temperature=temperature,
        top_p=top_p,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        use_cache=True,
        return_dict_in_generate=True,
    )

    thread = threading.Thread(target=image_model.generate, kwargs=generation_kwargs)
    thread.start()

    response = ""
    for new_text in streamer:
        if stop_image_generation.is_set():
            break
        response += new_text
        yield response

def stop_image_generation_func():
    stop_image_generation.set()
    return ""

def generate_stream_local(prompt, temperature, top_p, max_new_tokens):
    stop_code_generation.clear()
    inputs = code_tokenizer(prompt, return_tensors="pt").to(code_model.device)

    streamer = TextIteratorStreamer(code_tokenizer, skip_prompt=True, skip_special_tokens=True)

    generation_kwargs = dict(
        **inputs,
        streamer=streamer,
        temperature=temperature,
        top_p=top_p,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        use_cache=True,
        return_dict_in_generate=True,
    )

    thread = threading.Thread(target=code_model.generate, kwargs=generation_kwargs)
    thread.start()

    for new_text in streamer:
        if stop_code_generation.is_set():
            break
        yield new_text

# --- Respond logic for Gradio ---
def respond(message, temperature, top_p, max_new_tokens):
    sys_prompt = (
        "You are an AI coding assistant. If the user input is too vague to generate accurate code "
        "(e.g., lacks programming language, method, or details), ask clarifying questions before attempting to write the code.\n"
        "Think silently first and write your reasoning inside <think>...</think>. Then provide your final user-facing answer."
    )
    
    full_prompt = [
        {"role": "system", "content": sys_prompt},
        {"role": "user", "content": message}
    ]
    prompt = code_tokenizer.apply_chat_template(full_prompt, tokenize=False, add_generation_prompt=True)

    response = ""
    for part in generate_stream_local(prompt, temperature, top_p, max_new_tokens):
        response += part
        yield response
        # Future work should separate the reasoning process from the final answer.
        # if "</think>" in response:
        #     yield response.split("</think>")[-1].strip()

def stop_code_generation_func():
    stop_code_generation.set()
    return "🧾 Generated Code Output"


with gr.Blocks(theme=gr.themes.Soft()) as demo:

    # πŸ–ΌοΈ Image Description Tab
    with gr.Tab("πŸ–ΌοΈ Image Description"):
        gr.Markdown("## 🧠 Qwen-VL: Vision-Language Streaming Chat with Image Upload")
        
        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                image_input = gr.Image(
                    type="pil",
                    label="πŸ“€ Upload Image",
                    height=480,
                    width=480
                )
            with gr.Column(scale=1):
                prompt_input = gr.Textbox(
                    label="πŸ’¬ Prompt",
                    placeholder="e.g. Describe the image content",
                    value="Describe the picture",
                    lines=2
                )
                with gr.Row():
                    temperature = gr.Slider(
                        minimum=0.1,
                        maximum=1.0,
                        value=0.7,
                        step=0.05,
                        label="🎲 Temperature",
                        info="Controls randomness. Higher = more creative."
                    )
                    top_p = gr.Slider(
                        minimum=0.1,
                        maximum=1.0,
                        value=0.95,
                        step=0.05,
                        label="πŸ” Top-p",
                        info="Cumulative probability for nucleus sampling."
                    )
                max_new_tokens = gr.Slider(
                    minimum=50,
                    maximum=1000,
                    value=500,
                    step=10,
                    label="πŸ“ Max New Tokens",
                    info="Maximum length of generated output."
                )
                generate_btn = gr.Button("πŸš€ Generate Description", variant="primary")
                stop_btn = gr.Button("⏹️ Stop and Clear", variant="stop")

        output = gr.Textbox(
            label="πŸ“„ Streaming Response",
            placeholder="The model will respond here...",
            lines=10,
            interactive=False
        )

        generate_btn.click(
            fn=generate_response_image,
            inputs=[image_input, prompt_input, temperature, top_p, max_new_tokens],
            outputs=output
        )
        
        stop_btn.click(fn=stop_image_generation_func, outputs=output)

    # πŸ’» Code Generator Tab
    with gr.Tab("πŸ’» Code Generator"):
        gr.Markdown("## πŸ€– DeepSeek-R1-Distill-Qwen: Code Generation from Natural Language")
        
        with gr.Row(equal_height=True):
            with gr.Column(scale=2):
                code_des = gr.Textbox(
                    label="🧾 Describe Your Code",
                    placeholder="e.g. Write a Python function to reverse a string",
                    lines=8
                )
                generate_code_btn = gr.Button("🧠 Generate Code", variant="primary")
                stop_code_btn = gr.Button("⏹️ Stop and Clear", variant="stop")

            with gr.Column(scale=1):
                temperature_code = gr.Slider(
                    minimum=0.1,
                    maximum=1.5,
                    value=0.7,
                    step=0.05,
                    label="🎲 Temperature",
                    info="Higher = more creative code."
                )
                top_p_code = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.95,
                    step=0.05,
                    label="πŸ” Top-p",
                    info="Top-p sampling filter."
                )
                max_new_tokens_code = gr.Slider(
                    minimum=50,
                    maximum=2048,
                    value=1000,
                    step=10,
                    label="πŸ“ Max New Tokens",
                    info="Maximum token length of generated code."
                )

        output_code = gr.Markdown(
            value="🧾 Generated Code Output",
            label="🧾 Generated Code Output",  
            show_label=True, 
            visible=True, 
            container=True,
            height = 300,
            show_copy_button=True
        )

        generate_code_btn.click(
            fn=respond,
            inputs=[code_des, temperature_code, top_p_code, max_new_tokens_code],
            outputs=output_code
        )
        stop_code_btn.click(fn=stop_code_generation_func, outputs=output_code)

demo.launch()