Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from smolagents import CodeAgent, DuckDuckGoSearchTool, TransformersModel | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Define Agent --- | |
class SmolAgentWrapper: | |
def __init__(self): | |
# Use a model that's compatible with AutoModelForCausalLM | |
# GPT-2 should work, but we need to properly handle the chat template issue | |
self.model = TransformersModel( | |
model_id="gpt2", | |
generation_kwargs={ | |
"do_sample": True, | |
"max_new_tokens": 256, | |
"temperature": 0.7, | |
"chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\nUser: {{ message['content'] }}\n{% elif message['role'] == 'assistant' %}\nAssistant: {{ message['content'] }}\n{% elif message['role'] == 'system' %}\nSystem: {{ message['content'] }}\n{% endif %}\n{% endfor %}\n{% if add_generation_prompt %}\nAssistant: {% endif %}" | |
} | |
) | |
# Alternative options if the above doesn't work: | |
# Option 1: Using a different GPT model that might handle chat better | |
# self.model = TransformersModel(model_id="facebook/opt-350m") | |
# Option 2: Using a model with better instruction following | |
# self.model = TransformersModel(model_id="databricks/dolly-v2-3b") | |
self.tools = [DuckDuckGoSearchTool()] | |
self.agent = CodeAgent(model=self.model, tools=self.tools) | |
def __call__(self, question: str) -> str: | |
return self.agent.run(question) | |
# --- Evaluation Logic --- | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# Create the agent | |
try: | |
agent = SmolAgentWrapper() | |
except Exception as e: | |
return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
# Fetch questions | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
# Run agent | |
results_log = [] | |
answers_payload = [] | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# Submit answers | |
submission_data = { | |
"username": username.strip(), | |
"agent_code": agent_code, | |
"answers": answers_payload | |
} | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except Exception as e: | |
return f"Submission Failed: {e}", pd.DataFrame(results_log) | |
# --- Gradio Interface --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# SmolAgent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Log in to Hugging Face with the button below. | |
2. Click the button to run all GAIA questions through the SmolAgent. | |
3. Results will be submitted automatically and your score will be shown. | |
**Note:** Model runs on Hugging Face Inference API. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("-" * 60) | |
print("Launching SmolAgent Space...") | |
print("-" * 60) | |
demo.launch(debug=True, share=False) |