File size: 4,446 Bytes
10e9b7d
 
eccf8e4
3c4371f
c7c39df
17d0a1c
e80aab9
3db6293
c7c39df
e80aab9
7f66248
17d0a1c
3bf290c
c7c39df
7f66248
 
4021bf3
3bf290c
17d0a1c
 
7f66248
 
17d0a1c
 
3c4371f
7e4a06b
7f66248
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
7f66248
37d3429
17d0a1c
31243f4
 
7f66248
36ed51a
3c4371f
7f66248
eccf8e4
31243f4
7d65c66
31243f4
 
17d0a1c
31243f4
7d65c66
7f66248
e80aab9
7f66248
7d65c66
 
7f66248
31243f4
 
 
 
 
 
7d65c66
 
 
31243f4
7f66248
31243f4
 
 
 
7f66248
 
 
 
 
 
e80aab9
 
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
31243f4
 
7d65c66
7f66248
e80aab9
 
7f66248
e80aab9
7f66248
17d0a1c
 
 
7f66248
 
 
 
 
17d0a1c
 
e80aab9
7e4a06b
03f1283
17d0a1c
 
e80aab9
31243f4
ab98516
 
e80aab9
 
 
7f66248
 
 
17d0a1c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, DuckDuckGoSearchTool,TransformersModel

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"


# --- Define Agent ---
class SmolAgentWrapper:
    def __init__(self):
        self.model = TransformersModel(model_id="gpt2")  # Uses flan-t5-base via HF Inference API
        self.tools = [DuckDuckGoSearchTool()]  # You can add more tools here
        self.agent = CodeAgent(model=self.model, tools=self.tools)

    def __call__(self, question: str) -> str:
        return self.agent.run(question)


# --- Evaluation Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # Create the agent
    try:
        agent = SmolAgentWrapper()
    except Exception as e:
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    # Fetch questions
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        return f"Error fetching questions: {e}", None

    # Run agent
    results_log = []
    answers_payload = []

    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # Submit answers
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }

    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except Exception as e:
        return f"Submission Failed: {e}", pd.DataFrame(results_log)


# --- Gradio Interface ---
with gr.Blocks() as demo:
    gr.Markdown("# SmolAgent Evaluation Runner (Flan-T5 + DuckDuckGo Tool)")
    gr.Markdown(
        """
        **Instructions:**
        1. Log in to Hugging Face with the button below.
        2. Click the button to run all GAIA questions through the SmolAgent.
        3. Results will be submitted automatically and your score will be shown.

        **Note:** Model runs on Hugging Face Inference API using `flan-t5-base`, optimized for CPU.
        """
    )

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("-" * 60)
    print("Launching SmolAgent Space...")
    print("-" * 60)
    demo.launch(debug=True, share=False)