rss-mcp-client / client /tool_workflows.py
gperdrizet's picture
Edits and improvements to Gradio UI
da09bef verified
'''Functions to handle re-prompting and final reply generation
downstream of LLM tool calls.'''
import json
import logging
import queue
from anthropic.types import text_block
from client import prompts
from client.anthropic_bridge import AnthropicBridge
INTERMEDIATE_REPLY_HINTS = {
'rss_mcp_server_context_search': 'Let me find some additional context before I generate a final answer.',
'rss_mcp_server_find_article': 'I will find the title of that article.',
'rss_mcp_server_get_summary': 'I will summarize that article',
'rss_mcp_server_get_link': 'I will get the link to that article'
}
async def tool_loop(
user_query: str,
prior_reply: str,
result: list,
bridge: AnthropicBridge,
output_queue: queue.Queue,
dialog: logging.Logger
) -> None:
'''Re-prompts the LLM in a loop until it generates a final reply based on tool output.
Args:
user_query: the original user input that provoked the tool call
result: the complete model reply containing the tool call
bridge: AnthropicBridge class instance
output_queue: queue to send results back to Gradio UI
dialog: logger instance to record intermediate responses and internal dialog
'''
tool_call = result['tool_call']
tool_name = tool_call['name']
if tool_name == 'rss_mcp_server_get_feed':
reply = await get_feed_call(
user_query,
result,
bridge,
output_queue,
dialog
)
output_queue.put(reply)
else:
tool_call = result['tool_call']
tool_name = tool_call['name']
tool_parameters = tool_call['parameters']
response_content = result['llm_response'].content[0]
if isinstance(response_content, text_block.TextBlock):
intermediate_reply = response_content.text
else:
intermediate_reply = INTERMEDIATE_REPLY_HINTS[tool_name]
dialog.info('LLM intermediate reply: %s', intermediate_reply)
dialog.info('MCP: called %s', tool_name)
tool_result = json.loads(result['tool_result'].content)['text']
prompt = prompts.OTHER_TOOL_PROMPT.substitute(
user_query=user_query,
prior_reply=prior_reply,
intermediate_reply=intermediate_reply,
tool_name=tool_name,
tool_parameters=tool_parameters,
tool_result=tool_result
)
dialog.info('System: re-prompting LLM with return from %s call', tool_name)
while True:
reply = await other_call(
prompt,
bridge,
dialog
)
if 'final reply' in reply:
final_reply = reply['final reply']
dialog.info('LLM final reply: %s ...', final_reply[:50])
output_queue.put(final_reply)
break
else:
prompt = reply['new_prompt']
async def get_feed_call(
user_query: str,
result: list,
bridge: AnthropicBridge,
output_queue: queue.Queue,
dialog: logging.Logger
) -> str:
'''Re-prompts LLM after a call to get_feed().
Args:
user_query: the original user input that provoked the tool call
result: the complete model reply containing the tool call
bridge: AnthropicBridge class instance
output_queue: queue to send results back to Gradio UI
dialog: logger instance to record intermediate responses and internal dialog
'''
tool_call = result['tool_call']
tool_name = tool_call['name']
tool_parameters = tool_call['parameters']
website = tool_parameters['website']
response_content = result['llm_response'].content[0]
if isinstance(response_content, text_block.TextBlock):
intermediate_reply = response_content.text
else:
intermediate_reply = f'I Will check the {website} RSS feed for you'
dialog.info('LLM intermediate reply: %s', intermediate_reply)
dialog.info('MCP: called %s on %s', tool_name, website)
articles = json.loads(result['tool_result'].content)['text']
prompt = prompts.GET_FEED_PROMPT.substitute(
website=website,
user_query=user_query,
intermediate_reply=intermediate_reply,
articles=articles
)
input_message =[{
'role': 'user',
'content': prompt
}]
dialog.info('System: re-prompting LLM with return from %s call', tool_name)
result = await bridge.process_query(
prompts.REPROMPTING_SYSTEM_PROMPT,
input_message
)
try:
reply = result['llm_response'].content[0].text
except (IndexError, AttributeError):
reply = 'No final reply from model'
dialog.info('LLM final reply: %s ...', reply[:50])
output_queue.put(reply)
async def other_call(
prompt: list[dict],
bridge: AnthropicBridge,
dialog: logging.Logger
) -> dict:
'''Re-prompts LLM after a call to get_feed().
Args:
prompt: prompt to to send the LLM
result: the complete model reply containing the tool call
bridge: AnthropicBridge class instance
output_queue: queue to send results back to Gradio UI
dialog: logger instance to record intermediate responses and internal dialog
'''
input_message =[{
'role': 'user',
'content': prompt
}]
result = await bridge.process_query(
prompts.REPROMPTING_SYSTEM_PROMPT,
input_message
)
if result['tool_result']:
tool_call = result['tool_call']
tool_name = tool_call['name']
tool_parameters = tool_call['parameters']
response_content = result['llm_response'].content[0]
if isinstance(response_content, text_block.TextBlock):
intermediate_reply = response_content.text
else:
intermediate_reply = INTERMEDIATE_REPLY_HINTS[tool_name]
dialog.info('LLM intermediate reply: %s', intermediate_reply)
dialog.info('MCP: called %s', tool_name)
tool_result = json.loads(result['tool_result'].content)['text']
prompt += f'agent: {intermediate_reply}\n'
prompt += f'function call: {tool_name}("{tool_parameters}")'
prompt += f'function return: {tool_result}'
dialog.info('System: re-prompting LLM with return from %s call', tool_name)
return {'new_prompt': prompt}
else:
reply = result['llm_response'].content[0].text
return {'final reply': reply}