import os from smolagents import InferenceClientModel, LiteLLMModel, ToolCallingAgent, MCPClient, CodeAgent from huggingface_hub import InferenceClient # Create the Nebius-backed HuggingFace InferenceClient # hf_client = InferenceClient( # provider="nebius", # api_key=os.getenv("NEBIUS_API_KEY") # ) # Wrap it for smolagents agentic interface model = InferenceClientModel( model_id="Qwen/Qwen2.5-VL-72B-Instruct", provider="nebius", api_key=os.getenv("NEBIUS_API_KEY") ) messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me an easy ice cream recipe."}, ] # completion = client.chat.completions.create( # model="Qwen/Qwen2.5-VL-72B-Instruct", # messages=messages, # max_tokens=500 # ) # print(completion.choices[0].message.content) # Example: No tools, just agentic reasoning (tool use can be added if desired) agent = ToolCallingAgent(model=model, tools=[]) response = agent.run(messages[-1]['content'], max_steps=10) print(response)