cleaned up track visualization by removing the driver and automatically picking the fastest lap for the race. Now both speed and gear have a nice legend that is under the image
Browse files- README.md +1 -1
- api_playground.ipynb +112 -0
- app.py +3 -4
- fastf1_tools.py +2 -3
- utils/constants.py +9 -0
- utils/track_utils.py +36 -32
README.md
CHANGED
@@ -8,7 +8,7 @@ sdk_version: 5.32.0
|
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: apache-2.0
|
11 |
-
short_description: 'Historical & real-time F1 data
|
12 |
video_url: TBD
|
13 |
tags:
|
14 |
- 'mcp-server-track'
|
|
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: apache-2.0
|
11 |
+
short_description: 'Historical & real-time F1 data retrieval with agentic race strategy capabilities'
|
12 |
video_url: TBD
|
13 |
tags:
|
14 |
- 'mcp-server-track'
|
api_playground.ipynb
CHANGED
@@ -32,6 +32,118 @@
|
|
32 |
"# FastF1"
|
33 |
]
|
34 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
{
|
36 |
"cell_type": "code",
|
37 |
"execution_count": 2,
|
|
|
32 |
"# FastF1"
|
33 |
]
|
34 |
},
|
35 |
+
{
|
36 |
+
"cell_type": "code",
|
37 |
+
"execution_count": 7,
|
38 |
+
"id": "2a205292",
|
39 |
+
"metadata": {},
|
40 |
+
"outputs": [
|
41 |
+
{
|
42 |
+
"name": "stderr",
|
43 |
+
"output_type": "stream",
|
44 |
+
"text": [
|
45 |
+
"core INFO \tLoading data for Australian Grand Prix - Race [v3.5.3]\n",
|
46 |
+
"req INFO \tUsing cached data for session_info\n",
|
47 |
+
"req INFO \tUsing cached data for driver_info\n",
|
48 |
+
"req INFO \tUsing cached data for session_status_data\n",
|
49 |
+
"req INFO \tUsing cached data for lap_count\n",
|
50 |
+
"req INFO \tUsing cached data for track_status_data\n",
|
51 |
+
"req INFO \tUsing cached data for _extended_timing_data\n",
|
52 |
+
"req INFO \tUsing cached data for timing_app_data\n",
|
53 |
+
"core INFO \tProcessing timing data...\n",
|
54 |
+
"req INFO \tUsing cached data for car_data\n",
|
55 |
+
"req INFO \tUsing cached data for position_data\n",
|
56 |
+
"req INFO \tUsing cached data for weather_data\n",
|
57 |
+
"req INFO \tUsing cached data for race_control_messages\n",
|
58 |
+
"core WARNING \tDriver 4 completed the race distance 00:00.022000 before the recorded end of the session.\n",
|
59 |
+
"core INFO \tFinished loading data for 20 drivers: ['4', '1', '63', '12', '23', '18', '27', '16', '81', '44', '10', '22', '31', '87', '30', '5', '14', '55', '7', '6']\n"
|
60 |
+
]
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"name": "stdout",
|
64 |
+
"output_type": "stream",
|
65 |
+
"text": [
|
66 |
+
"Index(['Time', 'Driver', 'DriverNumber', 'LapTime', 'LapNumber', 'Stint',\n",
|
67 |
+
" 'PitOutTime', 'PitInTime', 'Sector1Time', 'Sector2Time', 'Sector3Time',\n",
|
68 |
+
" 'Sector1SessionTime', 'Sector2SessionTime', 'Sector3SessionTime',\n",
|
69 |
+
" 'SpeedI1', 'SpeedI2', 'SpeedFL', 'SpeedST', 'IsPersonalBest',\n",
|
70 |
+
" 'Compound', 'TyreLife', 'FreshTyre', 'Team', 'LapStartTime',\n",
|
71 |
+
" 'LapStartDate', 'TrackStatus', 'Position', 'Deleted', 'DeletedReason',\n",
|
72 |
+
" 'FastF1Generated', 'IsAccurate'],\n",
|
73 |
+
" dtype='object')\n",
|
74 |
+
" Driver DriverNumber Team\n",
|
75 |
+
"0 VER 1 Red Bull Racing\n",
|
76 |
+
"1 VER 1 Red Bull Racing\n",
|
77 |
+
"2 VER 1 Red Bull Racing\n",
|
78 |
+
"3 VER 1 Red Bull Racing\n",
|
79 |
+
"4 VER 1 Red Bull Racing\n",
|
80 |
+
".. ... ... ...\n",
|
81 |
+
"922 BEA 87 Haas F1 Team\n",
|
82 |
+
"923 BEA 87 Haas F1 Team\n",
|
83 |
+
"924 BEA 87 Haas F1 Team\n",
|
84 |
+
"925 BEA 87 Haas F1 Team\n",
|
85 |
+
"926 BEA 87 Haas F1 Team\n",
|
86 |
+
"\n",
|
87 |
+
"[927 rows x 3 columns]\n"
|
88 |
+
]
|
89 |
+
}
|
90 |
+
],
|
91 |
+
"source": [
|
92 |
+
"session = fastf1.get_session(2025, 1, \"race\")\n",
|
93 |
+
"session.load()\n",
|
94 |
+
"print(session.laps.columns)\n",
|
95 |
+
"print(session.laps[[\"Driver\", \"DriverNumber\", \"Team\"]])"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "code",
|
100 |
+
"execution_count": 5,
|
101 |
+
"id": "44f7516f",
|
102 |
+
"metadata": {},
|
103 |
+
"outputs": [
|
104 |
+
{
|
105 |
+
"name": "stdout",
|
106 |
+
"output_type": "stream",
|
107 |
+
"text": [
|
108 |
+
"Time 0 days 02:28:03.586000\n",
|
109 |
+
"Driver NOR\n",
|
110 |
+
"DriverNumber 4\n",
|
111 |
+
"LapTime 0 days 00:01:22.167000\n",
|
112 |
+
"LapNumber 43.0\n",
|
113 |
+
"Stint 5.0\n",
|
114 |
+
"PitOutTime NaT\n",
|
115 |
+
"PitInTime NaT\n",
|
116 |
+
"Sector1Time 0 days 00:00:28.553000\n",
|
117 |
+
"Sector2Time 0 days 00:00:18.537000\n",
|
118 |
+
"Sector3Time 0 days 00:00:35.077000\n",
|
119 |
+
"Sector1SessionTime 0 days 02:27:10.030000\n",
|
120 |
+
"Sector2SessionTime 0 days 02:27:28.567000\n",
|
121 |
+
"Sector3SessionTime 0 days 02:28:03.644000\n",
|
122 |
+
"SpeedI1 271.0\n",
|
123 |
+
"SpeedI2 290.0\n",
|
124 |
+
"SpeedFL 292.0\n",
|
125 |
+
"SpeedST 300.0\n",
|
126 |
+
"IsPersonalBest True\n",
|
127 |
+
"Compound HARD\n",
|
128 |
+
"TyreLife 10.0\n",
|
129 |
+
"FreshTyre False\n",
|
130 |
+
"Team McLaren\n",
|
131 |
+
"LapStartTime 0 days 02:26:41.419000\n",
|
132 |
+
"LapStartDate 2025-03-16 05:34:04.038000\n",
|
133 |
+
"TrackStatus 1\n",
|
134 |
+
"Position 1.0\n",
|
135 |
+
"Deleted False\n",
|
136 |
+
"DeletedReason \n",
|
137 |
+
"FastF1Generated False\n",
|
138 |
+
"IsAccurate True\n",
|
139 |
+
"Name: 635, dtype: object\n"
|
140 |
+
]
|
141 |
+
}
|
142 |
+
],
|
143 |
+
"source": [
|
144 |
+
"print(session.laps.pick_fastest())"
|
145 |
+
]
|
146 |
+
},
|
147 |
{
|
148 |
"cell_type": "code",
|
149 |
"execution_count": 2,
|
app.py
CHANGED
@@ -91,11 +91,10 @@ iface_track_visualization = gr.Interface(
|
|
91 |
gr.Number(label="Calendar year", value=CURRENT_YEAR, minimum=1950, maximum=CURRENT_YEAR),
|
92 |
gr.Textbox(label="Grand Prix", placeholder="Ex: Monaco", info="The name of the GP/country/location (Fuzzy matching supported) or round number"),
|
93 |
gr.Radio(["speed", "corners", "gear"], label="Visualization type", value="speed", info="What type of track visualization to generate"),
|
94 |
-
gr.Dropdown(label="Driver", choices=DRIVER_NAMES, info="Only applied for speed visualization. gear uses fastest lap during race.")
|
95 |
],
|
96 |
outputs="image",
|
97 |
title="Track Visualizations",
|
98 |
-
description="Get the track visualization for the given Grand Prix. Example: (2025,Monaco,speed
|
99 |
)
|
100 |
|
101 |
iface_session_results = gr.Interface(
|
@@ -121,7 +120,7 @@ iface_driver_info = gr.Interface(
|
|
121 |
],
|
122 |
outputs="text",
|
123 |
title="Driver Info",
|
124 |
-
description="Get background information about a specific driver"
|
125 |
)
|
126 |
|
127 |
iface_constructor_info = gr.Interface(
|
@@ -131,7 +130,7 @@ iface_constructor_info = gr.Interface(
|
|
131 |
],
|
132 |
outputs="text",
|
133 |
title="Constructor Info",
|
134 |
-
description="Get background information about a specific constructor"
|
135 |
)
|
136 |
|
137 |
|
|
|
91 |
gr.Number(label="Calendar year", value=CURRENT_YEAR, minimum=1950, maximum=CURRENT_YEAR),
|
92 |
gr.Textbox(label="Grand Prix", placeholder="Ex: Monaco", info="The name of the GP/country/location (Fuzzy matching supported) or round number"),
|
93 |
gr.Radio(["speed", "corners", "gear"], label="Visualization type", value="speed", info="What type of track visualization to generate"),
|
|
|
94 |
],
|
95 |
outputs="image",
|
96 |
title="Track Visualizations",
|
97 |
+
description="Get the track visualization (speed/corners/gear) for the given Grand Prix race. Example: (2025,Monaco,speed)"
|
98 |
)
|
99 |
|
100 |
iface_session_results = gr.Interface(
|
|
|
120 |
],
|
121 |
outputs="text",
|
122 |
title="Driver Info",
|
123 |
+
description="Get background information about a specific driver from the 2025 Formula 1 season"
|
124 |
)
|
125 |
|
126 |
iface_constructor_info = gr.Interface(
|
|
|
130 |
],
|
131 |
outputs="text",
|
132 |
title="Constructor Info",
|
133 |
+
description="Get background information about a specific constructor from the 2025 Formula 1 season"
|
134 |
)
|
135 |
|
136 |
|
fastf1_tools.py
CHANGED
@@ -155,14 +155,13 @@ def constructor_championship_standings(year: int, constructor_name: str) -> str:
|
|
155 |
standings_string = f"{constructor_name} {are_were} {constructor_standing['position'].iloc[0]}{suffix} with {constructor_standing['points'].iloc[0]} points and {constructor_standing['wins'].iloc[0]} wins"
|
156 |
return standings_string
|
157 |
|
158 |
-
def track_visualization(year: int, round: gp, visualization_type: str
|
159 |
"""Generate a visualization of the track with specified data.
|
160 |
|
161 |
Args:
|
162 |
year (int): The season year
|
163 |
round (str | int): The race round number or name
|
164 |
visualization_type (str): Type of visualization ('speed', 'corners', or 'gear')
|
165 |
-
driver_name (str): Name of the driver for driver-specific visualizations
|
166 |
|
167 |
Returns:
|
168 |
Image.Image: A PIL Image object containing the visualization
|
@@ -174,7 +173,7 @@ def track_visualization(year: int, round: gp, visualization_type: str, driver_na
|
|
174 |
session.load()
|
175 |
|
176 |
if visualization_type == "speed":
|
177 |
-
return track_utils.create_track_speed_visualization(session
|
178 |
elif visualization_type == "corners":
|
179 |
return track_utils.create_track_corners_visualization(session)
|
180 |
elif visualization_type == "gear":
|
|
|
155 |
standings_string = f"{constructor_name} {are_were} {constructor_standing['position'].iloc[0]}{suffix} with {constructor_standing['points'].iloc[0]} points and {constructor_standing['wins'].iloc[0]} wins"
|
156 |
return standings_string
|
157 |
|
158 |
+
def track_visualization(year: int, round: gp, visualization_type: str) -> Image.Image:
|
159 |
"""Generate a visualization of the track with specified data.
|
160 |
|
161 |
Args:
|
162 |
year (int): The season year
|
163 |
round (str | int): The race round number or name
|
164 |
visualization_type (str): Type of visualization ('speed', 'corners', or 'gear')
|
|
|
165 |
|
166 |
Returns:
|
167 |
Image.Image: A PIL Image object containing the visualization
|
|
|
173 |
session.load()
|
174 |
|
175 |
if visualization_type == "speed":
|
176 |
+
return track_utils.create_track_speed_visualization(session)
|
177 |
elif visualization_type == "corners":
|
178 |
return track_utils.create_track_corners_visualization(session)
|
179 |
elif visualization_type == "gear":
|
utils/constants.py
CHANGED
@@ -118,26 +118,35 @@ The implemented functions make it possible to:
|
|
118 |
- Apply filters to an API string - `apply_filters(api_string, *filters)`
|
119 |
- Send a request to the OpenF1 API - `send_request(api_string)`
|
120 |
|
|
|
|
|
121 |
"""
|
122 |
|
|
|
123 |
MARKDOWN_OPENF1_EXAMPLES = """
|
124 |
|
125 |
' Retrieve data about car number 55 with session_key 9159 where the speed was greater than 315 '
|
|
|
126 |
```https://api.openf1.org/v1/car_data?driver_number=55&session_key=9159&speed>=315```
|
127 |
|
128 |
' Retrieve data about driver number 1 with session_key 9158 '
|
|
|
129 |
```https://api.openf1.org/v1/drivers?driver_number=1&session_key=9158```
|
130 |
|
131 |
' Retrieve data about intervals with session_key 9165 where the interval was less than 0.005s'
|
|
|
132 |
```https://api.openf1.org/v1/intervals?session_key=9165&interval<0.005```
|
133 |
|
134 |
' Retrieve data about laps with session_key 9161 for driver number 63 on lap number 8'
|
|
|
135 |
```https://api.openf1.org/v1/laps?session_key=9161&driver_number=63&lap_number=8```
|
136 |
|
137 |
' Retrieve data about meetings in 2023 for Singapore'
|
|
|
138 |
```https://api.openf1.org/v1/meetings?year=2023&country_name=Singapore```
|
139 |
|
140 |
' Retrieve data about pit stops with session_key 9158 where the pit duration was less than 31s'
|
|
|
141 |
```https://api.openf1.org/v1/pit?session_key=9158&pit_duration<31```
|
142 |
|
143 |
"""
|
|
|
118 |
- Apply filters to an API string - `apply_filters(api_string, *filters)`
|
119 |
- Send a request to the OpenF1 API - `send_request(api_string)`
|
120 |
|
121 |
+
The inputs are strings while the output is a JSON object. The examples are listed in an order that would be expected to be used in a real-life scenario. Some example API strings are listed below in the last tool `send_request(api_string)`.
|
122 |
+
|
123 |
"""
|
124 |
|
125 |
+
|
126 |
MARKDOWN_OPENF1_EXAMPLES = """
|
127 |
|
128 |
' Retrieve data about car number 55 with session_key 9159 where the speed was greater than 315 '
|
129 |
+
|
130 |
```https://api.openf1.org/v1/car_data?driver_number=55&session_key=9159&speed>=315```
|
131 |
|
132 |
' Retrieve data about driver number 1 with session_key 9158 '
|
133 |
+
|
134 |
```https://api.openf1.org/v1/drivers?driver_number=1&session_key=9158```
|
135 |
|
136 |
' Retrieve data about intervals with session_key 9165 where the interval was less than 0.005s'
|
137 |
+
|
138 |
```https://api.openf1.org/v1/intervals?session_key=9165&interval<0.005```
|
139 |
|
140 |
' Retrieve data about laps with session_key 9161 for driver number 63 on lap number 8'
|
141 |
+
|
142 |
```https://api.openf1.org/v1/laps?session_key=9161&driver_number=63&lap_number=8```
|
143 |
|
144 |
' Retrieve data about meetings in 2023 for Singapore'
|
145 |
+
|
146 |
```https://api.openf1.org/v1/meetings?year=2023&country_name=Singapore```
|
147 |
|
148 |
' Retrieve data about pit stops with session_key 9158 where the pit duration was less than 31s'
|
149 |
+
|
150 |
```https://api.openf1.org/v1/pit?session_key=9158&pit_duration<31```
|
151 |
|
152 |
"""
|
utils/track_utils.py
CHANGED
@@ -2,11 +2,11 @@ import matplotlib as mpl
|
|
2 |
import numpy as np
|
3 |
from matplotlib import pyplot as plt
|
4 |
from matplotlib.collections import LineCollection
|
5 |
-
import fastf1 as ff1
|
6 |
from PIL import Image
|
7 |
from io import BytesIO
|
8 |
from typing import Union
|
9 |
import json
|
|
|
10 |
|
11 |
# Custom types
|
12 |
gp = Union[str, int]
|
@@ -19,15 +19,10 @@ def rotate(xy, *, angle):
|
|
19 |
return np.matmul(xy, rot_mat)
|
20 |
|
21 |
|
22 |
-
|
23 |
-
def create_track_speed_visualization(session, driver_name: str) -> Image:
|
24 |
|
25 |
weekend = session.event
|
26 |
-
session.
|
27 |
-
with open("assets/driver_abbreviations.json") as f:
|
28 |
-
driver_abbreviations = json.load(f)
|
29 |
-
driver_abbreviation = driver_abbreviations[driver_name]
|
30 |
-
lap = session.laps.pick_drivers(driver_abbreviation).pick_fastest()
|
31 |
|
32 |
# Get telemetry data
|
33 |
x = lap.telemetry['X'] # values for x-axis
|
@@ -40,7 +35,7 @@ def create_track_speed_visualization(session, driver_name: str) -> Image:
|
|
40 |
|
41 |
# We create a plot with title and adjust some setting to make it look good.
|
42 |
fig, ax = plt.subplots(sharex=True, sharey=True, figsize=(12, 6.75))
|
43 |
-
fig.suptitle(f'{weekend["EventName"]} - {
|
44 |
|
45 |
# Adjust margins and turn of axis
|
46 |
plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.12)
|
@@ -67,6 +62,7 @@ def create_track_speed_visualization(session, driver_name: str) -> Image:
|
|
67 |
normlegend = mpl.colors.Normalize(vmin=color.min(), vmax=color.max())
|
68 |
legend = mpl.colorbar.ColorbarBase(cbaxes, norm=normlegend, cmap=mpl.colormaps['viridis'],
|
69 |
orientation="horizontal")
|
|
|
70 |
|
71 |
# Create a PIL image from the plot
|
72 |
fig = plt.gcf()
|
@@ -86,7 +82,7 @@ def create_track_speed_visualization(session, driver_name: str) -> Image:
|
|
86 |
return img
|
87 |
|
88 |
|
89 |
-
def create_track_corners_visualization(session) -> Image:
|
90 |
|
91 |
lap = session.laps.pick_fastest()
|
92 |
pos = lap.get_pos_data()
|
@@ -162,8 +158,8 @@ def create_track_corners_visualization(session) -> Image:
|
|
162 |
return img
|
163 |
|
164 |
|
165 |
-
def create_track_gear_visualization(session) -> Image:
|
166 |
-
|
167 |
lap = session.laps.pick_fastest()
|
168 |
tel = lap.get_telemetry()
|
169 |
|
@@ -174,39 +170,47 @@ def create_track_gear_visualization(session) -> Image:
|
|
174 |
segments = np.concatenate([points[:-1], points[1:]], axis=1)
|
175 |
gear = tel['nGear'].to_numpy().astype(float)
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
lc_comp.set_array(gear)
|
181 |
lc_comp.set_linewidth(4)
|
|
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
|
|
|
|
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
f"{lap['Driver']} - {session.event['EventName']}"
|
190 |
-
)
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
# Create a PIL image from the plot
|
197 |
-
fig = plt.gcf()
|
198 |
-
|
199 |
-
# Save the figure to a BytesIO buffer and convert to bytes
|
200 |
buf = BytesIO()
|
201 |
fig.savefig(buf, format='png', dpi=150, bbox_inches='tight')
|
202 |
buf.seek(0)
|
203 |
-
|
204 |
-
# Create PIL image from buffer bytes and close the figure
|
205 |
img_data = buf.getvalue()
|
206 |
plt.close(fig)
|
207 |
buf.close()
|
208 |
-
|
209 |
-
# Create new image from the raw bytes
|
210 |
img = Image.open(BytesIO(img_data))
|
211 |
return img
|
212 |
|
|
|
2 |
import numpy as np
|
3 |
from matplotlib import pyplot as plt
|
4 |
from matplotlib.collections import LineCollection
|
|
|
5 |
from PIL import Image
|
6 |
from io import BytesIO
|
7 |
from typing import Union
|
8 |
import json
|
9 |
+
from fastf1.core import Session
|
10 |
|
11 |
# Custom types
|
12 |
gp = Union[str, int]
|
|
|
19 |
return np.matmul(xy, rot_mat)
|
20 |
|
21 |
|
22 |
+
def create_track_speed_visualization(session: Session) -> Image:
|
|
|
23 |
|
24 |
weekend = session.event
|
25 |
+
lap = session.laps.pick_fastest()
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# Get telemetry data
|
28 |
x = lap.telemetry['X'] # values for x-axis
|
|
|
35 |
|
36 |
# We create a plot with title and adjust some setting to make it look good.
|
37 |
fig, ax = plt.subplots(sharex=True, sharey=True, figsize=(12, 6.75))
|
38 |
+
fig.suptitle(f'[Speed] {weekend["EventName"]} - {lap["Driver"]} #{lap["DriverNumber"]} ', size=24, y=0.97)
|
39 |
|
40 |
# Adjust margins and turn of axis
|
41 |
plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.12)
|
|
|
62 |
normlegend = mpl.colors.Normalize(vmin=color.min(), vmax=color.max())
|
63 |
legend = mpl.colorbar.ColorbarBase(cbaxes, norm=normlegend, cmap=mpl.colormaps['viridis'],
|
64 |
orientation="horizontal")
|
65 |
+
legend.set_label("Speed [km/h]")
|
66 |
|
67 |
# Create a PIL image from the plot
|
68 |
fig = plt.gcf()
|
|
|
82 |
return img
|
83 |
|
84 |
|
85 |
+
def create_track_corners_visualization(session: Session) -> Image:
|
86 |
|
87 |
lap = session.laps.pick_fastest()
|
88 |
pos = lap.get_pos_data()
|
|
|
158 |
return img
|
159 |
|
160 |
|
161 |
+
def create_track_gear_visualization(session: Session) -> Image:
|
162 |
+
weekend = session.event
|
163 |
lap = session.laps.pick_fastest()
|
164 |
tel = lap.get_telemetry()
|
165 |
|
|
|
170 |
segments = np.concatenate([points[:-1], points[1:]], axis=1)
|
171 |
gear = tel['nGear'].to_numpy().astype(float)
|
172 |
|
173 |
+
fig, ax = plt.subplots(sharex=True, sharey=True, figsize=(12, 6.75))
|
174 |
+
fig.suptitle(f'[Gear] {weekend["EventName"]} - {lap["Driver"]} #{lap["DriverNumber"]}', size=24, x=0.5, ha='center', y=0.97)
|
175 |
+
|
176 |
+
plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.12)
|
177 |
+
ax.axis('off')
|
178 |
+
|
179 |
+
# Plot a background track line (black, thick) for context
|
180 |
+
ax.plot(lap.telemetry['X'], lap.telemetry['Y'],
|
181 |
+
color='black', linestyle='-', linewidth=16, zorder=0)
|
182 |
+
|
183 |
+
# Draw the colored segments
|
184 |
+
lc_comp = LineCollection(segments, norm=plt.Normalize(gear.min(), gear.max()), cmap=plt.cm.get_cmap('viridis', 8))
|
185 |
lc_comp.set_array(gear)
|
186 |
lc_comp.set_linewidth(4)
|
187 |
+
ax.add_collection(lc_comp)
|
188 |
|
189 |
+
# Set axis limits to the data range with padding to avoid clipping
|
190 |
+
x_pad = (x.max() - x.min()) * 0.03
|
191 |
+
y_pad = (y.max() - y.min()) * 0.03
|
192 |
+
ax.set_xlim(x.min() - x_pad, x.max() + x_pad)
|
193 |
+
ax.set_ylim(y.min() - y_pad, y.max() + y_pad)
|
194 |
|
195 |
+
# Set axis equal for correct aspect
|
196 |
+
ax.set_aspect('equal', adjustable='datalim')
|
|
|
|
|
197 |
|
198 |
+
# Add colorbar at the bottom
|
199 |
+
cbaxes = fig.add_axes([0.25, 0.05, 0.5, 0.05])
|
200 |
+
normlegend = plt.Normalize(1, 8)
|
201 |
+
legend = mpl.colorbar.ColorbarBase(cbaxes, norm=normlegend, cmap=plt.cm.get_cmap('viridis', 8),
|
202 |
+
orientation="horizontal")
|
203 |
+
legend.set_ticks(np.arange(1, 9))
|
204 |
+
legend.set_ticklabels(np.arange(1, 9))
|
205 |
+
legend.set_label("Gear")
|
206 |
|
207 |
# Create a PIL image from the plot
|
|
|
|
|
|
|
208 |
buf = BytesIO()
|
209 |
fig.savefig(buf, format='png', dpi=150, bbox_inches='tight')
|
210 |
buf.seek(0)
|
|
|
|
|
211 |
img_data = buf.getvalue()
|
212 |
plt.close(fig)
|
213 |
buf.close()
|
|
|
|
|
214 |
img = Image.open(BytesIO(img_data))
|
215 |
return img
|
216 |
|