import os | |
from smolagents import InferenceClientModel, LiteLLMModel, ToolCallingAgent, MCPClient, CodeAgent | |
from huggingface_hub import InferenceClient | |
# Create the Nebius-backed HuggingFace InferenceClient | |
# hf_client = InferenceClient( | |
# provider="nebius", | |
# api_key=os.getenv("NEBIUS_API_KEY") | |
# ) | |
# Wrap it for smolagents agentic interface | |
model = InferenceClientModel( | |
model_id="Qwen/Qwen2.5-VL-72B-Instruct", | |
provider="nebius", | |
api_key=os.getenv("NEBIUS_API_KEY") | |
) | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": "Tell me an easy ice cream recipe."}, | |
] | |
# completion = client.chat.completions.create( | |
# model="Qwen/Qwen2.5-VL-72B-Instruct", | |
# messages=messages, | |
# max_tokens=500 | |
# ) | |
# print(completion.choices[0].message.content) | |
# Example: No tools, just agentic reasoning (tool use can be added if desired) | |
agent = ToolCallingAgent(model=model, tools=[]) | |
response = agent.run(messages[-1]['content'], max_steps=10) | |
print(response) |