|
""" |
|
This module provides tools for interacting with Formula 1 data using the FastF1 library. |
|
|
|
Tools to implement |
|
- driver info |
|
- compare drivers |
|
""" |
|
|
|
import json |
|
import fastf1 |
|
import gradio as gr |
|
import pandas as pd |
|
from PIL import Image |
|
from typing import Union |
|
from fastf1.core import Session |
|
|
|
|
|
from utils import parser_utils, track_utils |
|
from utils.constants import ( |
|
AVAILABLE_SESSION_TYPES, |
|
DRIVER_DETAILS |
|
) |
|
|
|
|
|
gp = Union[str, int] |
|
session_type = Union[str, int, None] |
|
|
|
|
|
|
|
def get_session(year: int, round: gp, session_type: session_type) -> Session: |
|
"""Retrieve a specific Formula 1 session. |
|
|
|
Args: |
|
year (int): The season year (e.g., 2024) |
|
round (str | int): The race round number or name (e.g., 1 or 'Monaco') |
|
session_type (str | int | None): Type of session (e.g., 'FP1', 'Q', 'R') |
|
|
|
Returns: |
|
Session: A FastF1 Session object for the specified parameters |
|
|
|
Note: |
|
If session_type is a string and not in AVAILABLE_SESSION_TYPES, |
|
returns an error message string instead. |
|
""" |
|
|
|
|
|
if isinstance(session_type, str): |
|
if session_type.lower() not in AVAILABLE_SESSION_TYPES: |
|
return f"Session type {session_type} is not available. Supported session types: {AVAILABLE_SESSION_TYPES}" |
|
|
|
return fastf1.get_session(year, round, session_type) |
|
|
|
def get_season_calendar(year: int) -> str: |
|
"""Get the complete race calendar for a specific F1 season. |
|
|
|
Args: |
|
year (int): The season year to get the calendar for |
|
|
|
Returns: |
|
str: Formatted string containing the season calendar |
|
""" |
|
season_calendar = fastf1.get_event_schedule(year) |
|
return parser_utils.parse_season_calendar(season_calendar) |
|
|
|
def get_event_info(year: int, round: gp, format: str) -> str: |
|
"""Retrieve information about a specific Formula 1 event. |
|
|
|
Args: |
|
year (int): The season year |
|
round (str | int): The race round number or name |
|
format (str): Output format ('human' for readable text, 'LLM' for structured data) |
|
|
|
Returns: |
|
str: Formatted event information based on the specified format |
|
""" |
|
|
|
event = fastf1.get_session(year, round, "race").event |
|
if format == "human": |
|
data_interval = f"{event['Session1DateUtc'].date()} - {event['Session5DateUtc'].date()}" |
|
event_string = f"Round {event['RoundNumber']} : {event['EventName']} - {event['Location']}, {event['Country']} ({data_interval})" |
|
return event_string |
|
elif format == "LLM": |
|
return parser_utils.parse_event_info(event) |
|
|
|
|
|
def get_constructor_standings(year: int) -> str: |
|
"""Retrieve constructor championship standings for a given year. |
|
|
|
Args: |
|
year (int): The season year |
|
|
|
Returns: |
|
str: Constructor championship standings |
|
""" |
|
pass |
|
|
|
def get_driver_standings(year: int) -> str: |
|
"""Retrieve driver championship standings for a given year. |
|
|
|
Args: |
|
year (int): The season year |
|
|
|
Returns: |
|
str: Driver championship standings |
|
""" |
|
pass |
|
|
|
def driver_championship_standings(year: int, driver_name: str) -> str: |
|
"""Get the championship standing for a specific driver in a given year. |
|
|
|
Args: |
|
year (int): The season year |
|
driver_name (str): Full name of the driver (e.g., 'Lewis Hamilton') |
|
|
|
Returns: |
|
str: Formatted string with driver's position, points, and wins |
|
""" |
|
|
|
with open("assets/driver_abbreviations.json") as f: |
|
driver_abbreviations = json.load(f) |
|
driver_abbreviation = driver_abbreviations[driver_name] |
|
ergast = fastf1.ergast.Ergast() |
|
driver_standings = ergast.get_driver_standings(year).content[0] |
|
driver_standing = driver_standings[["position", "points", "wins", "driverCode"]].reset_index(drop=True) |
|
driver_standing = driver_standing[driver_standing["driverCode"] == driver_abbreviation] |
|
suffix = "st" if driver_standing['position'].iloc[0] == 1 else "nd" if driver_standing['position'].iloc[0] == 2 else "rd" if driver_standing['position'].iloc[0] == 3 else "th" |
|
standings_string = f"{driver_name} is {driver_standing['position'].iloc[0]}{suffix} with {driver_standing['points'].iloc[0]} points and {driver_standing['wins'].iloc[0]} wins" |
|
return standings_string |
|
|
|
def constructor_championship_standings(year: int, constructor_name: str) -> str: |
|
"""Get the championship standing for a specific constructor in a given year. |
|
|
|
Args: |
|
year (int): The season year |
|
constructor_name (str): Name of the constructor team (e.g., 'Mercedes') |
|
|
|
Returns: |
|
str: Formatted string with constructor's position, points, and wins |
|
""" |
|
|
|
team_mapping = { |
|
"McLaren": "McLaren", |
|
"Ferrari": "Ferrari", |
|
"Red Bull Racing": "Red Bull", |
|
"Mercedes": "Mercedes", |
|
"Aston Martin": "Aston Martin", |
|
"Alpine": "Alpine F1 Team", |
|
"Haas": "Haas F1 Team", |
|
"Racing Bulls": "RB F1 Team", |
|
"Williams": "Williams", |
|
"Kick Sauber": "Sauber" |
|
} |
|
|
|
ergast = fastf1.ergast.Ergast() |
|
constructor_standings = ergast.get_constructor_standings(year).content[0] |
|
constructor_standing = constructor_standings[["position", "points", "wins", "constructorName"]].reset_index(drop=True) |
|
mapped_name = team_mapping[constructor_name] |
|
constructor_standing = constructor_standing[constructor_standing["constructorName"] == mapped_name] |
|
suffix = "st" if constructor_standing['position'].iloc[0] == 1 else "nd" if constructor_standing['position'].iloc[0] == 2 else "rd" if constructor_standing['position'].iloc[0] == 3 else "th" |
|
standings_string = f"{constructor_name} are {constructor_standing['position'].iloc[0]}{suffix} with {constructor_standing['points'].iloc[0]} points and {constructor_standing['wins'].iloc[0]} wins" |
|
return standings_string |
|
|
|
def track_visualization(year: int, round: gp, visualization_type: str, driver_name: str) -> Image.Image: |
|
"""Generate a visualization of the track with specified data. |
|
|
|
Args: |
|
year (int): The season year |
|
round (str | int): The race round number or name |
|
visualization_type (str): Type of visualization ('speed', 'corners', or 'gear') |
|
driver_name (str): Name of the driver for driver-specific visualizations |
|
|
|
Returns: |
|
Image.Image: A PIL Image object containing the visualization |
|
""" |
|
|
|
session = get_session(year, round, "race") |
|
session.load() |
|
|
|
if visualization_type == "speed": |
|
return track_utils.create_track_speed_visualization(session, driver_name) |
|
elif visualization_type == "corners": |
|
return track_utils.create_track_corners_visualization(session) |
|
elif visualization_type == "gear": |
|
return track_utils.create_track_gear_visualization(session) |
|
|
|
def get_session_results(year: int, round: gp, session_type: session_type) -> pd.DataFrame: |
|
"""Retrieve and format the results of a specific session. |
|
|
|
Args: |
|
year (int): The season year |
|
round (str | int): The race round number or name |
|
session_type (str | int | None): Type of session (e.g., 'Q', 'R', 'Sprint') |
|
|
|
Returns: |
|
pd.DataFrame: DataFrame containing the session results |
|
|
|
Raises: |
|
gr.Error: If the session type is not supported for the specified round |
|
""" |
|
|
|
try: |
|
session = get_session(year, round, session_type) |
|
session.load(telemetry=False) |
|
results = session.results |
|
except ValueError as e: |
|
raise gr.Error(f"Session type {session_type} is not supported for the specified round. This Grand Prix most likely did not include a sprint race/quali.") |
|
|
|
df = results[["DriverNumber", "Abbreviation", "FullName", "Position", "GridPosition", "Points", "Status", "Q1", "Q2", "Q3"]] |
|
df["Name"] = df.apply(lambda row: f"{row['FullName']} ({row['Abbreviation']} • {row['DriverNumber']})", axis=1) |
|
df = df.drop(columns=["FullName", "Abbreviation", "DriverNumber"]) |
|
df = df.rename(columns={"Position": "Pos", "GridPosition": "Grid Pos"}) |
|
|
|
|
|
if session_type in ["race", "sprint"]: |
|
df = df[["Pos", "Name", "Points", "Grid Pos", "Status"]] |
|
elif "qualifying" in session_type: |
|
df[["Q1", "Q2", "Q3"]] = df[["Q1", "Q2", "Q3"]].apply(lambda x: x.dt.total_seconds().apply(lambda y: f"{int(y//60):02d}:{int(y%60):02d}.{int(y%1*1000):03d}" if pd.notna(y) else "-")) |
|
df = df[["Pos", "Name", "Q1", "Q2", "Q3"]] |
|
return df |
|
|
|
def get_driver_info(driver_name: str) -> str: |
|
"""Retrieve detailed information about a specific driver. |
|
|
|
Args: |
|
driver_name (str): Full name of the driver (e.g., 'Max Verstappen') |
|
|
|
Returns: |
|
str: Formatted string with driver's details including name, team, number, |
|
nationality, and a brief summary |
|
""" |
|
driver = DRIVER_DETAILS[driver_name] |
|
driver_info_string = f"{driver_name} ({driver['birth_date']})\n{driver['team']} #{driver['number']}\n{driver['nationality']}\n\n{driver['summary']}" |
|
return driver_info_string |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
session = get_session(2024, 1, "fp1") |
|
session.load() |