File size: 3,031 Bytes
febfdb0 de3a23c febfdb0 de3a23c 35aeee0 fa395d9 de3a23c 35aeee0 fa395d9 35aeee0 42f3a9e 35aeee0 42f3a9e febfdb0 cf55632 de3a23c 35aeee0 de3a23c febfdb0 cf55632 febfdb0 d4991e4 febfdb0 de3a23c 42f3a9e 35aeee0 cf55632 35aeee0 febfdb0 35aeee0 42f3a9e 35aeee0 d69ce5a 35aeee0 febfdb0 42f3a9e febfdb0 cf55632 35aeee0 cf55632 35aeee0 cf55632 febfdb0 35aeee0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import os
import datetime
import gradio as gr
import openf1_tools
from smolagents import InferenceClientModel, LiteLLMModel, ToolCallingAgent, MCPClient
# Can manully set this to a specific time to make the agent think it is in the past
time = datetime.datetime.now().astimezone().isoformat()
SYSTEM_PROMPT = """You are a helpful Formula 1 assistant and strategist. You have access to various F1 data and tools to help answer questions about races, drivers, teams, and more.
Be concise and accurate in your responses. If you don't know something, use the available tools to find the information.
In addition, you will be asked to act as a live race engineer strategist during a Formula 1 race, making crucial calls during the event.
Current time (ISO 8601): {time}"""
def agent_chat(message: str, history: list):
# Manually compose messages: system prompt, then history, then current user message
message = f"{SYSTEM_PROMPT}\n{"\n".join([f"{x['role']}: {x['content']}" for x in history])}\nTask: {message}"
return agent.run(message, max_steps=5)
if __name__ == "__main__":
list_tools = True # Set to True to only list tools (used for debugging)
local_model = True # If you have Ollama installed, set this to True
openf1_tool_only = True
try:
mcp_client = MCPClient(
{"url": "https://agents-mcp-hackathon-f1-mcp-server.hf.space/gradio_api/mcp/sse", "transport": "sse"})
tools = mcp_client.get_tools()
if openf1_tool_only:
openf1_fn_names = [f"f1_mcp_server_{fn}" for fn in dir(openf1_tools) if callable(getattr(openf1_tools, fn))]
openf1_fn_names.remove("f1_mcp_server_urlopen")
tools = [t for t in tools if (t.name in openf1_fn_names)]
if list_tools:
print("### MCP tools ### ")
print("\n".join(f"Tool {1+i}: {t.name}: {t.description}" for i,t in enumerate(tools)))
mcp_client.disconnect()
exit(0)
# Define model
if local_model:
model = LiteLLMModel(
model_id="ollama_chat/qwen3:1.7b",
api_base="http://127.0.0.1:11434", # Default ollama server
num_ctx=32768,
)
else:
model = InferenceClientModel(
model_id="deepseek-ai/DeepSeek-R1",
provider="nebius",
api_key=os.getenv("NEBIUS_API_KEY")
)
agent = ToolCallingAgent(model=model, tools=[*tools])
chat_interface = gr.ChatInterface(
fn=agent_chat,
type="messages",
examples=[
"What are the driver standings for the 2024 Formula 1 season?",
"What is the calendar for the 2024 Formula 1 season?"
],
title="🏎️ Formula 1 Assistant",
description="This is a simple agent that uses MCP tools to answer questions about Formula 1."
)
chat_interface.launch()
finally:
mcp_client.disconnect() |